## Magdalena Bazalova-Carter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876539/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | FLASH radiotherapy with photon beams. Medical Physics, 2022, 49, 2055-2067.                                                                                                        | 1.6 | 28        |
| 2  | Multi-contrast CT imaging using a high energy resolution CdTe detector and a CZT photon-counting detector. Journal of Instrumentation, 2022, 17, P01004.                           | 0.5 | 6         |
| 3  | Investigation of image quality of MV and kV CBCT with lowâ€Z beams and high DQE detector. Medical Physics, 2022, , .                                                               | 1.6 | 0         |
| 4  | Dose calculations for preclinical radiobiology experiments conducted with singleâ€field cabinet<br>irradiators. Medical Physics, 2022, , .                                         | 1.6 | 3         |
| 5  | Design optimization of an electron-to-photon conversion target for ultra-high dose rate x-ray<br>(FLASH) experiments at TRIUMF. Physics in Medicine and Biology, 2022, 67, 105003. | 1.6 | 9         |
| 6  | Lead-doped scintillator dosimeters for detection of ultrahigh dose-rate x-rays. Physics in Medicine and Biology, 2022, 67, 105007.                                                 | 1.6 | 2         |
| 7  | Orthorhombic Nonâ€Perovskite CsPbI <sub>3</sub> Microwires for Stable Highâ€Resolution Xâ€Ray<br>Detectors. Advanced Optical Materials, 2022, 10, .                                | 3.6 | 14        |
| 8  | Contaminant detection using a CZT photon counting detector with TDI image reconstruction. Journal of Instrumentation, 2022, 17, P05010.                                            | 0.5 | 1         |
| 9  | Contaminant detection in non-destructive testing using a CZT photon-counting detector. Journal of Instrumentation, 2021, 16, P01011-P01011.                                        | 0.5 | 15        |
| 10 | High length-to-width aspect ratio lead bromide microwires <i>via</i> perovskite-induced local concentration gradient for X-ray detection. CrystEngComm, 2021, 23, 2215-2221.       | 1.3 | 3         |
| 11 | fastCAT: Fast cone beam CT (CBCT) simulation. Medical Physics, 2021, 48, 4448-4458.                                                                                                | 1.6 | 11        |
| 12 | Dosimetry of a novel converging Xâ€ray source for kilovoltage radiotherapy. Medical Physics, 2021, 48,<br>5947-5958.                                                               | 1.6 | 0         |
| 13 | Characterization of an xâ€ray tubeâ€based ultrahigh doseâ€rate system for in vitro irradiations. Medical<br>Physics, 2021, 48, 7399-7409.                                          | 1.6 | 9         |
| 14 | A detective quantum efficiency for spectroscopic Xâ€ray imaging detectors. Medical Physics, 2021, 48,<br>6781-6799.                                                                | 1.6 | 4         |
| 15 | Experimental validation of Fastcat kV and MV cone beam CT (CBCT) simulator. Medical Physics, 2021, 48, 6869-6880.                                                                  | 1.6 | 4         |
| 16 | Single-Crystal Bismuth Thiophosphate, BiPS <sub>4</sub> , as a Nontoxic and Mechanically Robust X-ray<br>Detector. ACS Applied Materials & Interfaces, 2021, 13, 56296-56301.      | 4.0 | 1         |
| 17 | Optimization of a CZT photon counting detector for contaminant detection. Journal of Instrumentation, 2021, 16, P11015.                                                            | 0.5 | 8         |
| 18 | External beam radiation therapy with kilovoltage x-rays. Physica Medica, 2020, 79, 103-112.                                                                                        | 0.4 | 14        |

| #  | Article                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Optimization of radiochromic film stacks to diagnose high-flux laser-accelerated proton beams.<br>Review of Scientific Instruments, 2020, 91, 093303.                                              | 0.6 | 8         |
| 20 | Technical Note: Synthesizing of lung tumors in computed tomography images. Medical Physics, 2020, 47, 5070-5076.                                                                                   | 1.6 | 2         |
| 21 | Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation. Journal of Applied Clinical Medical Physics, 2020, 21, 314-324.                             | 0.8 | 9         |
| 22 | A failure modes and effects analysis quality management framework for imageâ€guided small animal<br>irradiators: A change in paradigm for radiation biology. Medical Physics, 2020, 47, 2013-2022. | 1.6 | 4         |
| 23 | Design of a combined X-ray fluorescence Computed Tomography (CT) and photon-counting CT table-top imaging system. Journal of Instrumentation, 2020, 15, P06031-P06031.                             | 0.5 | 5         |
| 24 | Initial Evaluation of the Performance of Novel Inorganic Scintillating Detectors for Small Animal<br>Irradiation Dosimetry. IEEE Sensors Journal, 2020, 20, 4704-4712.                             | 2.4 | 9         |
| 25 | Physics and biology of ultrahigh dose-rate (FLASH) radiotherapy: a topical review. Physics in Medicine and Biology, 2020, 65, 23TR03.                                                              | 1.6 | 135       |
| 26 | Multi-contrast K-edge imaging on a bench-top photon-counting CT system: acquisition parameter study. Journal of Instrumentation, 2020, 15, P10029-P10029.                                          | 0.5 | 17        |
| 27 | Photon-counting computed tomography of lanthanide contrast agents with a high-flux 330-μm-pitch cadmium zinc telluride detector in a table-top system. Journal of Medical Imaging, 2020, 7, 1.     | 0.8 | 13        |
| 28 | Optimizing Novel Inorganic Scintillation Detectors for Applications in Medical Physics. , 2020, , .                                                                                                |     | 2         |
| 29 | Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform<br>( <scp>SARRP</scp> ). Medical Physics, 2019, 46, 394-404.                                 | 1.6 | 15        |
| 30 | Preclinical dose verification using a 3D printed mouse phantom for radiobiology experiments. Medical Physics, 2019, 46, 5294-5303.                                                                 | 1.6 | 6         |
| 31 | On the capabilities of conventional xâ€ray tubes to deliver ultraâ€high (FLASH) dose rates. Medical<br>Physics, 2019, 46, 5690-5695.                                                               | 1.6 | 43        |
| 32 | Monte Carlo calculated kilovoltage x-ray arc therapy plans for three lung cancer patients. Biomedical<br>Physics and Engineering Express, 2019, 5, 065022.                                         | 0.6 | 3         |
| 33 | Optimal planar X-ray imaging soft tissue segmentation using a photon counting detector. Journal of Instrumentation, 2019, 14, P01020-P01020.                                                       | 0.5 | 2         |
| 34 | Unsupervised learning methods in X-ray spectral imaging material segmentation. Journal of Instrumentation, 2019, 14, P06022-P06022.                                                                | 0.5 | 3         |
| 35 | X-Ray Fluorescence Computed Tomography Induced by Photon, Electron, and Proton Beams. IEEE Transactions on Medical Imaging, 2019, 38, 2735-2743.                                                   | 5.4 | 3         |
| 36 | [18F]-SuPAR: A Radiofluorinated Probe for Noninvasive Imaging of DNA Damage-Dependent<br>Poly(ADP-ribose) Polymerase Activity. Bioconjugate Chemistry, 2019, 30, 1331-1342.                        | 1.8 | 11        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A 3D printed modular phantom for quality assurance of imageâ€guided small animal irradiators: Design,<br>imaging experiments, and Monte Carlo simulations. Medical Physics, 2019, 46, 2015-2024.                   | 1.6 | 14        |
| 38 | Investigation of combined kV / MV CBCT imaging with a high―DQE MV detector. Medical Physics, 2019, 46, 563-575.                                                                                                    | 1.6 | 5         |
| 39 | Technical Note: Manufacturing of a realistic mouse phantom for dosimetry of radiobiology experiments. Medical Physics, 2019, 46, 1030-1036.                                                                        | 1.6 | 10        |
| 40 | Sheet beam xâ€ray fluorescence computed tomography (XFCT) imaging of gold nanoparticles. Medical<br>Physics, 2018, 45, 2572-2582.                                                                                  | 1.6 | 17        |
| 41 | Optimization of a table-top x-ray fluorescence computed tomography (XFCT) system. Physics in Medicine and Biology, 2018, 63, 235013.                                                                               | 1.6 | 14        |
| 42 | MicroCT imaging dose to mouse organs using a validated Monte Carlo model of the small animal radiation research platform (SARRP). Physics in Medicine and Biology, 2018, 63, 115012.                               | 1.6 | 11        |
| 43 | Inverse optimization of lowâ€cost kilovoltage xâ€ray arc therapy plans. Medical Physics, 2018, 45, 5161-5171.                                                                                                      | 1.6 | 6         |
| 44 | RECORDS: improved Reporting of montE CarlO RaDiation transport Studies. International Journal of Radiation Oncology Biology Physics, 2018, 101, 792-793.                                                           | 0.4 | 0         |
| 45 | Monte Carlo optimization of a microbeam collimator design for use on the small animal radiation research platform (SARRP). Physics in Medicine and Biology, 2018, 63, 175004.                                      | 1.6 | 8         |
| 46 | RECORDS: improved Reporting of montE CarlO RaDiation transport Studies: Report of the <scp>AAPM</scp> Research Committee Task Group 268. Medical Physics, 2018, 45, e1-e5.                                         | 1.6 | 178       |
| 47 | Development of a high resolution voxelised head phantom for medical physics applications. Physica<br>Medica, 2017, 33, 182-188.                                                                                    | 0.4 | 22        |
| 48 | Feasibility of external beam radiation therapy to deep-seated targets with kilovoltage x-rays. Medical<br>Physics, 2017, 44, 597-607.                                                                              | 1.6 | 12        |
| 49 | Brief Report: External Beam Radiation Therapy for the Treatment of Human Pluripotent Stem<br>Cell-Derived Teratomas. Stem Cells, 2017, 35, 1994-2000.                                                              | 1.4 | 12        |
| 50 | Very highâ€energy electron ( <scp>VHEE</scp> ) beams in radiation therapy; Treatment plan comparison<br>between <scp>VHEE</scp> , <scp>VMAT</scp> , and <scp>PPBS</scp> . Medical Physics, 2017, 44,<br>2544-2555. | 1.6 | 54        |
| 51 | Monte Carlo simulations of a kilovoltage external beam radiotherapy system on phantoms and breast patients. Medical Physics, 2017, 44, 6548-6559.                                                                  | 1.6 | 13        |
| 52 | Multi-institutional MicroCT image comparison of image-guided small animal irradiators. Physics in<br>Medicine and Biology, 2017, 62, 5760-5776.                                                                    | 1.6 | 13        |
| 53 | Measured and Monte Carlo simulated electron backscatter to the monitor chamber for the Varian<br>TrueBeam Linac. Physics in Medicine and Biology, 2016, 61, 8779-8793.                                             | 1.6 | 2         |
| 54 | Validation of Varian TrueBeam electron phase–spaces for Monte Carlo simulation of MLCâ€ <del>s</del> haped<br>fields. Medical Physics, 2016, 43, 2894-2903.                                                        | 1.6 | 11        |

| #  | Article                                                                                                                                                                                                                                            | IF                | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 55 | Performance of a clinical gridded electron gun in magnetic fields: Implications for MRIâ€linac therapy.<br>Medical Physics, 2016, 43, 5903-5914.                                                                                                   | 1.6               | 10        |
| 56 | Absolute dosimetric characterization of Gafchromic EBT3 and HDv2 films using commercial flat-bed scanners and evaluation of the scanner response function variability. Review of Scientific Instruments, 2016, 87, 073301.                         | 0.6               | 34        |
| 57 | Assessment of the quality of very high-energy electron radiotherapy planning. Radiotherapy and Oncology, 2016, 119, 154-158.                                                                                                                       | 0.3               | 34        |
| 58 | Aligned nanofibrillar collagen scaffolds – Guiding lymphangiogenesis for treatment of acquired<br>lymphedema. Biomaterials, 2016, 102, 259-267.                                                                                                    | 5.7               | 55        |
| 59 | Molecular Magnetic Resonance Imaging of Tumor Response to Therapy. Scientific Reports, 2015, 5, 14759.                                                                                                                                             | 1.6               | 43        |
| 60 | Protonâ€induced xâ€ray fluorescence CT imaging. Medical Physics, 2015, 42, 900-907.                                                                                                                                                                | 1.6               | 16        |
| 61 | Comparison of film measurements and Monte Carlo simulations of dose delivered with very highâ€energy electron beams in a polystyrene phantom. Medical Physics, 2015, 42, 1606-1613.                                                                | 1.6               | 40        |
| 62 | Treatment planning for radiotherapy with very highâ€energy electron beams and comparison of VHEE and VMAT plans. Medical Physics, 2015, 42, 2615-2625.                                                                                             | 1.6               | 55        |
| 63 | Experimental validation of L-shell x-ray fluorescence computed tomography imaging: phantom study.<br>Journal of Medical Imaging, 2015, 2, 043501.                                                                                                  | 0.8               | 21        |
| 64 | Optimized Detector Angular Configuration Increases the Sensitivity of X-ray Fluorescence Computed Tomography (XFCT). IEEE Transactions on Medical Imaging, 2015, 34, 1140-1147.                                                                    | 5.4               | 33        |
| 65 | The potential of L-shell X-ray fluorescence CT (XFCT) for molecular imaging. British Journal of Radiology, 2015, 88, 20140308.                                                                                                                     | 1.0               | 9         |
| 66 | Monte Carlo modeling of ultrasound probes for image guided radiotherapy. Medical Physics, 2015, 42, 5745-5756.                                                                                                                                     | 1.6               | 16        |
| 67 | MOâ€FGâ€303â€06: Evaluation of the Performance of Very Highâ€Energy Electron (VHEE) Beams in Radiotherap<br>Five Clinical Cases. Medical Physics, 2015, 42, 3568-3568.                                                                             | у: <sub>1.6</sub> | 4         |
| 68 | X-Ray Luminescence and X-Ray Fluorescence Computed Tomography: New Molecular Imaging Modalities.<br>IEEE Access, 2014, 2, 1051-1061.                                                                                                               | 2.6               | 53        |
| 69 | L-shell x-ray fluorescence computed tomography (XFCT) imaging of Cisplatin. Physics in Medicine and Biology, 2014, 59, 219-232.                                                                                                                    | 1.6               | 29        |
| 70 | Order of Magnitude Sensitivity Increase in X-ray Fluorescence Computed Tomography (XFCT) Imaging<br>With an Optimized Spectro-Spatial Detector Configuration: Theory and Simulation. IEEE Transactions<br>on Medical Imaging, 2014, 33, 1119-1128. | 5.4               | 35        |
| 71 | First Demonstration of Multiplexed X-Ray Fluorescence Computed Tomography (XFCT) Imaging. IEEE<br>Transactions on Medical Imaging, 2013, 32, 262-267.                                                                                              | 5.4               | 79        |
| 72 | Development of XFCT imaging strategy for monitoring the spatial distribution of platinum-based chemodrugs: Instrumentation and phantom validation. Medical Physics, 2013, 40, 030701.                                                              | 1.6               | 33        |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Modality comparison for small animal radiotherapy: A simulation study. Medical Physics, 2013, 41, 011710.                                                                                                                        | 1.6 | 27        |
| 74 | WE-C-108-01: JUNIOR INVESTIGATOR WINNER - Towards Radiation Therapy with Very High-Energy Electron Beams. Medical Physics, 2013, 40, 474-474.                                                                                    | 1.6 | 0         |
| 75 | TH-A-141-05: Ultra-Sensitive X-Ray Fluorescence Computed Tomography. Medical Physics, 2013, 40, 523-523.                                                                                                                         | 1.6 | 0         |
| 76 | SU-E-J-63: Correlation Between Radiation Dose and Molecular Bioluminescence Responses of 4T1 Breast<br>Cancer Cells for Adaptive Radiation Therapy. Medical Physics, 2013, 40, 164-164.                                          | 1.6 | 0         |
| 77 | TH-A-141-03: High-Sensitivity L-Shell X-Ray Fluorescence CT Imaging of Cisplatin. Medical Physics, 2013, 40, 523-523.                                                                                                            | 1.6 | Ο         |
| 78 | Investigation of X-ray Fluorescence Computed Tomography (XFCT) and K-Edge Imaging. IEEE<br>Transactions on Medical Imaging, 2012, 31, 1620-1627.                                                                                 | 5.4 | 81        |
| 79 | Monte Carlo model of the scanning beam digital x-ray (SBDX) source. Physics in Medicine and Biology, 2012, 57, 7381-7394.                                                                                                        | 1.6 | 7         |
| 80 | SU-E-J-198: Bioluminescence Monitoring of Metastatic Breast Cancer: Quantitative Assessment of Radiation Treatment Effects and Tracking of Tumor Cells. Medical Physics, 2012, 39, 3698-3698.                                    | 1.6 | 0         |
| 81 | WE-C-BRB-05: Monte Carlo Simulations and Experimental Validation of Rapid Dose Delivery with Very<br>High-Energy Electron Beams. Medical Physics, 2012, 39, 3944-3944.                                                           | 1.6 | 0         |
| 82 | TH-A-213CD-02: BEST IN PHYSICS (IMAGING) - The Feasibility of Multiplexed Biomarker Detection Using<br>X-Ray Stimulated Fluorescence Imaging. Medical Physics, 2012, 39, 3986-3986.                                              | 1.6 | 0         |
| 83 | WE-C-217BCD-07: Best in Physics (Joint Eyiaging-Therapy) - Direct Imaging of the Uptake of Platinum<br>Anticancer Agents Using X-Ray Stimulated Fluorescence: A Proof-Of-Concept Study. Medical Physics,<br>2012, 39, 3950-3951. | 1.6 | 0         |
| 84 | TH-A-213CD-01: Compton Scatter in X-Ray Fluorescence CT Imaging. Medical Physics, 2012, 39, 3986-3986.                                                                                                                           | 1.6 | 0         |
| 85 | The importance of tissue segmentation for dose calculations for kilovoltage radiation therapy.<br>Medical Physics, 2011, 38, 3039-3049.                                                                                          | 1.6 | 47        |
| 86 | TU-E-BRB-06: Monte Carlo Simulations of a Novel Kilovoltage Radiotherapy Source. Medical Physics, 2011, 38, 3767-3768.                                                                                                           | 1.6 | 1         |
| 87 | SU-E-T-316: Integration of Bioluminescence Imaging with Small Animal Radiotherapy for Treatment Planning and Response Assessment. Medical Physics, 2011, 38, 3560-3560.                                                          | 1.6 | 0         |
| 88 | TH-E-BRC-10: Accuracy of Monte Carlo Dose Calculations with Kilovoltage Photon Beams. Medical Physics, 2011, 38, 3871-3871.                                                                                                      | 1.6 | 0         |
| 89 | SU-E-T-15: GEANT4 Microdosimetry for Simulation of Dose Enhancement in Vivo at Orthovoltage Energy. Medical Physics, 2011, 38, 3488-3489.                                                                                        | 1.6 | 0         |
| 90 | SU-E-T-315: In Silico, in Vitro, and in Vivo Quantification of Tungsten and lodine in Dose Enhanced RT (DERT). Medical Physics, 2011, 38, 3560-3560.                                                                             | 1.6 | 0         |

| #   | Article                                                                                                                                                                   | IF     | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|
| 91  | Investigation of the effects of treatment planning variables in small animal radiotherapy dose distributions. Medical Physics, 2010, 37, 590-599.                         | 1.6    | 20        |
| 92  | SU-GG-J-128: Comparison of Dose Distributions for Small Animal Radiotherapy Using a MicroCT Scanner and a Single-Field Irradiator. Medical Physics, 2010, 37, 3175-3175.  | 1.6    | 2         |
| 93  | SUâ€GCâ€Tâ€449: Dosimetric Impact of CT Metal Artifacts on Proton Pencilâ€Beam Scanning Delivery. Medical Physics, 2010, 37, 3289-3290.                                   | 1.6    | Ο         |
| 94  | SUâ€GGâ€Jâ€131: Immobilization Bed for Multiâ€Modality Image Registration. Medical Physics, 2010, 37, 3175-3                                                              | 117.5. | 1         |
| 95  | Kilovoltage beam Monte Carlo dose calculations in submillimeter voxels for small animal radiotherapy. Medical Physics, 2009, 36, 4991-4999.                               | 1.6    | 35        |
| 96  | SU-FF-T-408: Tissue Inhomogeneities in Monte Carlo Treatment Planning for Proton Therapy. Medical Physics, 2009, 36, 2616-2616.                                           | 1.6    | 2         |
| 97  | MO-D-303A-06: ImaSim, An Animated Tool for Teaching Imaging. Medical Physics, 2009, 36, 2696-2697.                                                                        | 1.6    | 3         |
| 98  | SU-DD-A3-04: Monte Carlo Simulation of a MicroCT-Based Small Animal Radiotherapy System. Medical Physics, 2009, 36, 2425-2425.                                            | 1.6    | 0         |
| 99  | SU-FF-I-15: An Algorithm for Metal Streaking Artifact Reduction in Cone Beam CT. Medical Physics, 2009, 36, 2437-2737.                                                    | 1.6    | 0         |
| 100 | SU-FF-J-155: The Influence of Material Assignment On Monte Carlo Dose Calculations for Kilovoltage<br>Small Animal Radiotherapy. Medical Physics, 2009, 36, 2512-2512.    | 1.6    | 0         |
| 101 | SU-FF-T-671: Investigation of Effects of Treatment Planning Variables On Small Animal Therapy Dose Distributions. Medical Physics, 2009, 36, 2679-2679.                   | 1.6    | 0         |
| 102 | Tissue segmentation in Monte Carlo treatment planning: A simulation study using dual-energy CT<br>images. Radiotherapy and Oncology, 2008, 86, 93-98.                     | 0.3    | 56        |
| 103 | Monte Carlo dose calculations for phantoms with hip prostheses. Journal of Physics: Conference Series, 2008, 102, 012001.                                                 | 0.3    | 3         |
| 104 | Spectroscopic characterization of a novel electronic brachytherapy system. Physics in Medicine and Biology, 2008, 53, 61-75.                                              | 1.6    | 252       |
| 105 | Dual-energy CT-based material extraction for tissue segmentation in Monte Carlo dose calculations.<br>Physics in Medicine and Biology, 2008, 53, 2439-2456.               | 1.6    | 171       |
| 106 | TH-D-332-01: The Use of Dual-Energy CT Images for Monte Carlo Treatment Planning: Material Extraction and Metal Artifact Reduction. Medical Physics, 2008, 35, 2990-2990. | 1.6    | 0         |
| 107 | Monte Carlo simulation of a computed tomography x-ray tube. Physics in Medicine and Biology, 2007, 52, 5945-5955.                                                         | 1.6    | 52        |
| 108 | Correction of CT artifacts and its influence on Monte Carlo dose calculations. Medical Physics, 2007, 34, 2119-2132.                                                      | 1.6    | 112       |

| #   | Article                                                                                                                                                | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | MO-D-330A-03: Correction of Streaking Artifacts in CT Images and Its Influence On Monte Carlo Dose Calculations. Medical Physics, 2006, 33, 2158-2159. | 1.6 | 1         |