Ahamed Ibrahim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876526/publications.pdf

Version: 2024-02-01

933264 1058333 16 473 10 14 citations h-index g-index papers 17 17 17 719 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Neurodevelopment, nutrition and genetics. A contemporary retrospective on neurocognitive health on the occasion of the 100th anniversary of the National Institute of Nutrition, Hyderabad, India. Prostaglandins Leukotrienes and Essential Fatty Acids, 2022, 180, 102427.	1.0	2
2	Maternal n-3 PUFA deficiency alters uterine artery remodeling and placental epigenome in the mice. Journal of Nutritional Biochemistry, 2021, 96, 108784.	1.9	16
3	Diets with low n-6:n-3 PUFA ratio protects rats from fructose-induced dyslipidemia and associated hepatic changes: Comparison between 18:3 n-3 and long-chain n-3 PUFA. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 155, 102082.	1.0	6
4	MS-275, a class 1 histone deacetylase inhibitor augments glucagon-like peptide-1 receptor agonism to improve glycemic control and reduce obesity in diet-induced obese mice. ELife, 2020, 9, .	2.8	10
5	Chronic consumption of fructose in combination with trans fatty acids but not with saturated fatty acids induces nonalcoholic steatohepatitis with fibrosis in rats. European Journal of Nutrition, 2018, 57, 2171-2187.	1.8	16
6	Substitution of linoleic acid with α-linolenic acid or long chain n-3 polyunsaturated fatty acid prevents Western diet induced nonalcoholic steatohepatitis. Scientific Reports, 2018, 8, 10953.	1.6	46
7	Effect of Highâ€Sucrose and Highâ€Fructose Diets on Adipose Tissue Dysfunction and Metabolic Syndrome. FASEB Journal, 2018, 32, lb168.	0.2	0
8	Dietary 18:3 and Long Chain nâ€3 PUFA Protected Rats from Fructoseâ€Induced Oxidative and Endoplasmic Reticulum Stress in Visceral Adipose Tissue. FASEB Journal, 2018, 32, lb173.	0.2	1
9	Transient Decrease in Circulatory Testosterone and Homocysteine Precedes the Development of Metabolic Syndrome Features in Fructose-Fed Sprague Dawley Rats. Journal of Nutrition and Metabolism, 2016, 2016, 1-11.	0.7	10
10	Partial replacement of dietary linoleic acid with long chain n-3 polyunsaturated fatty acids protects against dextran sulfate sodium-induced colitis in rats. Prostaglandins Leukotrienes and Essential Fatty Acids, 2014, 91, 289-297.	1.0	14
11	Attenuation of colonic inflammation by partial replacement of dietary linoleic acid with \hat{l} ±-linolenic acid in a rat model of inflammatory bowel disease. British Journal of Nutrition, 2012, 108, 1612-1622.	1.2	60
12	Impact of maternal dietary fatty acid composition on glucose and lipid metabolism in male rat offspring aged 105 d. British Journal of Nutrition, 2009, 102, 233-241.	1.2	32
13	Dietary (n-3) Long Chain Polyunsaturated Fatty Acids Prevent Sucrose-Induced Insulin Resistance in Rats. Journal of Nutrition, 2005, 135, 2634-2638.	1.3	69
14	Dietary trans–fatty acids alter adipocyte plasma membrane fatty acid composition and insulin sensitivity in rats. Metabolism: Clinical and Experimental, 2005, 54, 240-246.	1.5	104
15	Substituting dietary linoleic acid with $\hat{l}\pm -l$ inolenic acid improves insulin sensitivity in sucrose fed rats. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005, 1733, 67-75.	1.2	57
16	Dietary <i>trans</i> fatty acids alter diaphragm phospholipid fatty acid composition, triacylglycerol content and glucose transport in rats. British Journal of Nutrition, 2005, 93, 829-833.	1,2	30