Stuart Lindsay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6876240/publications.pdf Version: 2024-02-01

STUADT LINDSAY

#	Article	IF	CITATIONS
1	The potential and challenges of nanopore sequencing. Nature Biotechnology, 2008, 26, 1146-1153.	17.5	2,201
2	Identifying single bases in a DNA oligomer with electron tunnelling. Nature Nanotechnology, 2010, 5, 868-873.	31.5	260
3	A Molecular Switch Based on Potential-Induced Changes of Oxidation State. Nano Letters, 2005, 5, 503-506.	9.1	256
4	Single-molecule spectroscopy of amino acids and peptides by recognition tunnelling. Nature Nanotechnology, 2014, 9, 466-473.	31.5	207
5	The emerging landscape of single-molecule protein sequencing technologies. Nature Methods, 2021, 18, 604-617.	19.0	198
6	Electronic Signatures of all Four DNA Nucleosides in a Tunneling Gap. Nano Letters, 2010, 10, 1070-1075.	9.1	167
7	Correlating confocal microscopy and atomic force indentation reveals metastatic cancer cells stiffen during invasion into collagen I matrices. Scientific Reports, 2016, 6, 19686.	3.3	123
8	Redox-gated electron transport in electrically wired ferrocene molecules. Chemical Physics, 2006, 326, 138-143.	1.9	109
9	Measuring single molecule conductance with break junctions. Faraday Discussions, 2006, 131, 145-154.	3.2	94
10	The promises and challenges of solid-state sequencing. Nature Nanotechnology, 2016, 11, 109-111.	31.5	71
11	Recognition tunneling. Nanotechnology, 2010, 21, 262001.	2.6	70
12	Role of contacts in long-range protein conductance. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5886-5891.	7.1	67
13	Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy. Accounts of Chemical Research, 2016, 49, 503-510.	15.6	55
14	Single Molecule Identification and Quantification of Glycosaminoglycans Using Solid-State Nanopores. ACS Nano, 2019, 13, 6308-6318.	14.6	53
15	Fixed-Gap Tunnel Junction for Reading DNA Nucleotides. ACS Nano, 2014, 8, 11994-12003.	14.6	48
16	Molecular wires and devices: Advances and issues. Faraday Discussions, 2006, 131, 403-409.	3.2	46
17	Slowing DNA Translocation through a Nanopore Using a Functionalized Electrode. ACS Nano, 2013, 7, 10319-10326.	14.6	44
18	Electronic single-molecule identification of carbohydrate isomers by recognition tunnelling. Nature Communications, 2016, 7, 13868.	12.8	42

STUART LINDSAY

#	Article	IF	CITATIONS
19	Gap Distance and Interactions in a Molecular Tunnel Junction. Journal of the American Chemical Society, 2011, 133, 14267-14269.	13.7	37
20	Electronic Conductance Resonance in Non-Redox-Active Proteins. Journal of the American Chemical Society, 2020, 142, 6432-6438.	13.7	37
21	Application of Catalyst-Free Click Reactions in Attaching Affinity Molecules to Tips of Atomic Force Microscopy for Detection of Protein Biomarkers. Langmuir, 2013, 29, 14622-14630.	3.5	32
22	Insulated gold scanning tunneling microscopy probes for recognition tunneling in an aqueous environment. Review of Scientific Instruments, 2012, 83, 015102.	1.3	31
23	Chemical recognition and binding kinetics in a functionalized tunnel junction. Nanotechnology, 2012, 23, 235101.	2.6	29
24	Synthesis, Physicochemical Properties, and Hydrogen Bonding of 4(5)â€Substituted 1â€ <i>H</i> â€Imidazoleâ€2â€carboxamide, a Potential Universal Reader for DNA Sequencing by Recognition Tunneling. Chemistry - A European Journal, 2012, 18, 5998-6007.	3.3	28
25	Length dependence of charge transport in oligoanilines. Applied Physics Letters, 2007, 90, 072112.	3.3	27
26	Physical model for recognition tunneling. Nanotechnology, 2015, 26, 084001.	2.6	27
27	Universal Readers Based on Hydrogen Bonding or π–π Stacking for Identification of DNA Nucleotides in Electron Tunnel Junctions. ACS Nano, 2016, 10, 11304-11316.	14.6	27
28	Observation of giant conductance fluctuations in a protein. Nano Futures, 2017, 1, 035002.	2.2	27
29	Electronic Decay Length in a Protein Molecule. Nano Letters, 2019, 19, 4017-4022.	9.1	26
30	Ubiquitous Electron Transport in Non-Electron Transfer Proteins. Life, 2020, 10, 72.	2.4	26
31	The potential and challenges of nanopore sequencing. , 2009, , 261-268.		23
32	Recognition Tunneling of Canonical and Modified RNA Nucleotides for Their Identification with the Aid of Machine Learning. ACS Nano, 2018, 12, 7067-7075.	14.6	23
33	An AFM/Rotaxane Molecular Reading Head for Sequenceâ€Dependent DNA Structures. Small, 2008, 4, 1468-1475.	10.0	21
34	Engineering an Enzyme for Direct Electrical Monitoring of Activity. ACS Nano, 2020, 14, 1360-1368.	14.6	21
35	Electronic Transport in Molecular Wires of Precisely Controlled Length Built from Modular Proteins. ACS Nano, 2022, 16, 1671-1680.	14.6	20
36	Long Lifetime of Hydrogen-Bonded DNA Basepairs by Force Spectroscopy. Biophysical Journal, 2012, 102, 2381-2390.	0.5	19

STUART LINDSAY

#	Article	IF	CITATIONS
37	Solution-state conformation and stoichiometry of yeast Sir3 heterochromatin fibres. Nature Communications, 2014, 5, 4751.	12.8	19
38	Single-Molecule Electronic Measurements with Metal Electrodes. Journal of Chemical Education, 2005, 82, 727.	2.3	18
39	On-chip isotachophoresis separation of functional DNA origami capture nanoarrays from cell lysate. Nano Research, 2013, 6, 712-719.	10.4	18
40	Measuring conductance switching in single proteins using quantum tunneling. Science Advances, 2022, 8, eabm8149.	10.3	18
41	SIR proteins create compact heterochromatin fibers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12447-12452.	7.1	17
42	Click Addition of a DNA Thread to the N-Termini of Peptides for Their Translocation through Solid-State Nanopores. ACS Nano, 2015, 9, 9652-9664.	14.6	16
43	Palladium electrodes for molecular tunnel junctions. Nanotechnology, 2012, 23, 425202.	2.6	14
44	1,8-Naphthyridine-2,7-diamine: a potential universal reader of Watson–Crick base pairs for DNA sequencing by electron tunneling. Organic and Biomolecular Chemistry, 2012, 10, 8654.	2.8	13
45	A Three-Arm Scaffold Carrying Affinity Molecules for Multiplex Recognition Imaging by Atomic Force Microscopy: The Synthesis, Attachment to Silicon Tips, and Detection of Proteins. Journal of the American Chemical Society, 2015, 137, 7415-7423.	13.7	12
46	Biochemistry and semiconductor electronics—the next big hit for silicon?. Journal of Physics Condensed Matter, 2012, 24, 164201.	1.8	10
47	Charge transport in mesoscopic conducting polymer wires. Journal of Physics Condensed Matter, 2008, 20, 374120.	1.8	8
48	Probing Bioelectronic Connections Using Streptavidin Molecules with Modified Valency. Journal of the American Chemical Society, 2021, 143, 15139-15144.	13.7	8
49	Chromatin Control of Gene Expression: The Simplest Model. Biophysical Journal, 2007, 92, 1113.	0.5	7
50	A Y-Shaped Three-Arm Structure for Probing Bivalent Interactions between Protein Receptor–Ligand Using AFM and SPR. Langmuir, 2018, 34, 6930-6940.	3.5	3
51	Comparison of Ensemble and Single Molecule Methods for Particle Characterization and Binding Analysis of a PEGylated Single-Domain Antibody. Journal of Pharmaceutical Sciences, 2015, 104, 4015-4024.	3.3	2
52	Moving Electrons Purposefully through Single Molecules and Nanostructures: A Tribute to the Science of Professor Nongjian Tao (1963–2020). ACS Nano, 2020, 14, 12291-12312.	14.6	2