Duo Yi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687598/publications.pdf

Version: 2024-02-01

		1478505	1372567	
13	102	6	10	
papers	citations	h-index	g-index	
13	13	13	97	
all docs	docs citations	times ranked	citing authors	

#	Article	IF	Citations
1	Acousto-Optic Modulation Induced Noises on Heterodyne-Interrogated Interferometric Fiber-Optic Sensors. Journal of Lightwave Technology, 2018, 36, 3465-3471.	4.6	20
2	Downhole Microseismic Monitoring Using Time-Division Multiplexed Fiber-Optic Accelerometer Array. IEEE Access, 2020, 8, 120104-120113.	4.2	17
3	Fibre optic seismic sensor for down-well monitoring in the oil industry. Measurement: Journal of the International Measurement Confederation, 2018, 123, 145-149.	5.0	13
4	Self-Referenced Accelerometer Array Multiplexed on a Single Fiber Using a Dual-Pulse Heterodyne Phase-Sensitive OTDR. Journal of Lightwave Technology, 2018, 36, 2973-2979.	4.6	12
5	Thermo-Optic Property Measurement Using Surface Plasmon Resonance-Based Fiber Optic Sensor. IEEE Sensors Journal, 2020, 20, 11357-11363.	4.7	8
6	A self-assembled fiber Mach–Zehnder interferometer based on liquid crystals. Journal of Materials Chemistry C, 2020, 8, 11153-11159.	5.5	8
7	Common-Mode Noise Suppression Technique in Interferometric Fiber-Optic Sensors. Journal of Lightwave Technology, 2019, 37, 5619-5627.	4.6	7
8	Common-mode noise self-suppressed 3-component fiber optic accelerometer based on low-reflectivity Bragg gratings. Optics Letters, 2021, 46, 1596.	3.3	4
9	Demonstration of Fiber-Optic Seismic Sensor With Improved Dynamic Response in Oilfield Application. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-8.	4.7	4
10	Finite element analysis of fiber optic embedded in thermal spray coating. Journal of Intelligent Material Systems and Structures, 2018, 29, 896-904.	2.5	3
11	Analysis and Suppression of Aliased Noises in Time-Division-Multiplexing Interferometric Fiber-Optic Sensor Array. Journal of Lightwave Technology, 2022, 40, 2670-2678.	4.6	3
12	Development of a flame spraying coating–based fiber composite structure: A thermo-mechanical finite element study. Journal of Intelligent Material Systems and Structures, 2020, 31, 1950-1958.	2.5	2
13	Multiplexed Weak Waist-Enlarged Fiber Taper Curvature Sensor and Its Rapid Inline Fabrication. Sensors, 2021, 21, 6782.	3.8	1