Laura J Knoll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6875354/publications.pdf

Version: 2024-02-01

62 papers

1,726 citations

304368
22
h-index

315357 38 g-index

72 all docs 72 docs citations

72 times ranked 1854 citing authors

#	Article	IF	CITATIONS
1	MIxS-SA: a MIxS extension defining the minimum information standard for sequence data from symbiont-associated micro-organisms. ISME Communications, 2022, 2, .	1.7	3
2	Dual Transcriptomics To Determine Gamma Interferon-Independent Host Response to Intestinal Cryptosporidium parvum Infection. Infection and Immunity, 2022, 90, iai0063821.	1.0	5
3	Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional <i>In Vitro</i> Cultures. Microbiology and Molecular Biology Reviews, 2022, 86, e0002522.	2.9	9
4	Innate immune cell response to host-parasite interaction in a human intestinal tissue microphysiological system. Science Advances, 2022, 8, eabm8012.	4.7	10
5	RIPK3 Facilitates Host Resistance to Oral Toxoplasma gondii Infection. Infection and Immunity, 2021, 89,	1.0	14
6	Editorial overview of Pearls Microbiome Series: E pluribus unum. PLoS Pathogens, 2021, 17, e1009912.	2.1	0
7	Novel Murine Pancreatic Tumor Model Demonstrates Immunotherapeutic Control of Tumor Progression by a Toxoplasma gondii Protein. Infection and Immunity, 2021, 89, e0050821.	1.0	6
8	Breakthroughs in microbiology made possible with organoids. PLoS Pathogens, 2021, 17, e1010080.	2.1	6
9	Dual-Stage Picolinic Acid-Derived Inhibitors of <i>Toxoplasma gondii</i> . ACS Medicinal Chemistry Letters, 2020, 11, 2382-2388.	1.3	3
10	A conserved coccidian gene is involved in Toxoplasma sensitivity to the anti-apicomplexan compound, tartrolon E. International Journal for Parasitology: Drugs and Drug Resistance, 2020, 14, 1-7.	1.4	6
11	Comparisons of the Sexual Cycles for the Coccidian Parasites Eimeria and Toxoplasma. Frontiers in Cellular and Infection Microbiology, 2020, 10, 604897.	1.8	16
12	A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathogens, 2020, 16, e1008650.	2.1	12
13	Bradyzoite and sexual stage development. , 2020, , 807-857.		2
14	Dual metabolomic profiling uncovers Toxoplasma manipulation of the host metabolome and the discovery of a novel parasite metabolic capability. PLoS Pathogens, 2020, 16, e1008432.	2.1	34
15	Entamoeba histolytica: Five facts about modeling a complex human disease in rodents. PLoS Pathogens, 2020, 16, e1008950.	2.1	9
16	Parasite microbiome project: Grand challenges. PLoS Pathogens, 2019, 15, e1008028.	2.1	50
17	Investigating the role of interleukin 10 on Eimeria intestinal pathogenesis in broiler chickens. Veterinary Immunology and Immunopathology, 2019, 218, 109934.	0.5	30
18	Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. PLoS Biology, 2019, 17, e3000364.	2.6	101

#	Article	IF	CITATIONS
19	Oral antibody to interleukin-10 receptor 2, but not interleukin-10 receptor 1, as an effective Eimeria species immunotherapy in broiler chickens. Poultry Science, 2019, 98, 3471-3480.	1.5	9
20	Transcriptional Analysis Shows a Robust Host Response to <i>Toxoplasma gondii</i> during Early and Late Chronic Infection in Both Male and Female Mice. Infection and Immunity, 2019, 87, .	1.0	27
21	Proteomic and transcriptomic analyses of early and late-chronic Toxoplasma gondii infection shows novel and stage specific transcripts. BMC Genomics, 2019, 20, 859.	1.2	35
22	Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. , 2019, 17, e3000364.		0
23	Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. , 2019, 17, e3000364.		0
24	Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. , 2019, 17, e3000364.		0
25	Intestinal delta-6-desaturase activity determines host range for Toxoplasma sexual reproduction. , 2019, 17, e3000364.		0
26	Cyclooxygenase-1 and -2 Play Contrasting Roles in Listeria-Stimulated Immunity. Journal of Immunology, 2018, 200, 3729-3738.	0.4	15
27	Patatinâ€like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Molecular Microbiology, 2018, 107, 34-46.	1.2	38
28	Pearls collections: What we can learn about infectious disease and cancer. PLoS Pathogens, 2018, 14, e1006915.	2.1	12
29	Conveying Discovery to a Broad Audience. PLoS Pathogens, 2016, 12, e1005425.	2.1	0
30	Development of Complex Models to Study Co- and Polymicrobial Infections and Diseases. PLoS Pathogens, 2016, 12, e1005858.	2.1	7
31	Functional Analysis of the Rhoptry Kinome during Chronic Toxoplasma gondii Infection. MBio, 2016, 7,	1.8	5
32	Developmental change in translation initiation alters the localization of a common microbial protein necessary for <i>Toxoplasma</i> chronic infection. Molecular Microbiology, 2016, 102, 1086-1098.	1.2	8
33	Z-DNA Binding Protein Mediates Host Control of Toxoplasma gondii Infection. Infection and Immunity, 2016, 84, 3063-3070.	1.0	14
34	Long-Term Relationships: the Complicated Interplay between the Host and the Developmental Stages of Toxoplasma gondii during Acute and Chronic Infections. Microbiology and Molecular Biology Reviews, 2015, 79, 387-401.	2.9	90
35	Toxoplasma gondii Profilin Promotes Recruitment of Ly6Chi CCR2+ Inflammatory Monocytes That Can Confer Resistance to Bacterial Infection. PLoS Pathogens, 2014, 10, e1004203.	2.1	37
36	A Toxoplasma Patatin-Like Protein Changes Localization and Alters the Cytokine Response during Toxoplasmic Encephalitis. Infection and Immunity, 2014, 82, 618-625.	1.0	16

#	Article	IF	CITATIONS
37	Toxoplasma gondii Upregulates Interleukin-12 To Prevent Plasmodium berghei-Induced Experimental Cerebral Malaria. Infection and Immunity, 2014, 82, 1343-1353.	1.0	13
38	Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics, 2014, 15, 806.	1.2	236
39	Bradyzoite Development., 2014, , 521-549.		13
40	Fusidic acid is an effective treatment against Toxoplasma gondii and Listeria monocytogenes in vitro, but not in mice. Parasitology Research, 2013, 112, 3859-3863.	0.6	10
41	A <scp>HT</scp> / <scp>PEXEL</scp> Motif in <i>Toxoplasma</i> Dense Granule Proteins is a Signal for Protein Cleavage but not Export into the Host Cell. Traffic, 2013, 14, 519-531.	1.3	54
42	A Genome-Wide siRNA Screen to Identify Host Factors Necessary for Growth of the Parasite Toxoplasma gondii. PLoS ONE, 2013, 8, e68129.	1.1	19
43	A Patatin-Like Protein Protects Toxoplasma gondii from Degradation in a Nitric Oxide-Dependent Manner. Infection and Immunity, 2012, 80, 55-61.	1.0	56
44	A <i>Toxoplasma gondii</i> mutant highlights the importance of translational regulation in the apicoplast during animal infection. Molecular Microbiology, 2011, 82, 1204-1216.	1.2	7
45	TgVTC2 is involved in polyphosphate accumulation in Toxoplasma gondii. Molecular and Biochemical Parasitology, 2011, 176, 121-126.	0.5	20
46	Examination of a Virulence Mutant Uncovers the Ribosome Biogenesis Regulatory Protein of Toxoplasma gondii. Journal of Parasitology, 2011, 97, 1173-1177.	0.3	2
47	Parasite-Mediated Upregulation of NK Cell-Derived Gamma Interferon Protects against Severe Highly Pathogenic H5N1 Influenza Virus Infection. Journal of Virology, 2011, 85, 8680-8688.	1.5	25
48	Involvement of a Toxoplasma gondii Chromatin Remodeling Complex Ortholog in Developmental Regulation. PLoS ONE, 2011, 6, e19570.	1.1	12
49	Toxoplasma gondii Cyst Wall Formation in Activated Bone Marrow-derived Macrophages and Bradyzoite Conditions. Journal of Visualized Experiments, 2010, , .	0.2	22
50	Isolation of Toxoplasma gondii development mutants identifies a potential proteophosphogylcan that enhances cyst wall formation. Molecular and Biochemical Parasitology, 2010, 169, 120-123.	0.5	34
51	A Transmembrane Domain-Containing Surface Protein from <i>Toxoplasma gondii </i> Augments Replication in Activated Immune Cells and Establishment of a Chronic Infection. Infection and Immunity, 2009, 77, 3731-3739.	1.0	8
52	The Ins and Outs of Nuclear Trafficking: Unusual Aspects in Apicomplexan Parasites. DNA and Cell Biology, 2009, 28, 277-284.	0.9	36
53	Functional analysis of key nuclear trafficking components reveals an atypical Ran network required for parasite pathogenesis. Molecular Microbiology, 2008, 70, 410-420.	1.2	7
54	Highly Polymorphic Family of Glycosylphosphatidylinositol-Anchored Surface Antigens with Evidence of Developmental Regulation in <i>Toxoplasma gondii</i> Infection and Immunity, 2008, 76, 103-110.	1.0	27

#	Article	IF	CITATION
55	Parasite Stage–Specific Recognition of Endogenous <i>Toxoplasma gondii</i> –Derived CD8 ⁺ T Cell Epitopes. Journal of Infectious Diseases, 2008, 198, 1625-1633.	1.9	111
56	Discovery of parasite virulence genes reveals a unique regulator of chromosome condensation 1 ortholog critical for efficient nuclear trafficking. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 10181-10186.	3.3	47
57	A patatin-like protein protectsToxoplasma gondiifrom degradation in activated macrophages. Molecular Microbiology, 2007, 63, 482-496.	1.2	46
58	The BSR4 protein is up-regulated in Toxoplasma gondii bradyzoites, however the dominant surface antigen recognised by the P36 monoclonal antibody is SRS9. International Journal for Parasitology, 2007, 37, 877-885.	1.3	23
59	Increased efficiency of homologous recombination in Toxoplasma gondii dense granule protein 3 demonstrates that GRA3 is not necessary in cell culture but does contribute to virulence. Molecular and Biochemical Parasitology, 2007, 153, 149-157.	0.5	47
60	Adaptation of signature-tagged mutagenesis for Toxoplasma gondii: a negative screening strategy to isolate genes that are essential in restrictive growth conditions. Molecular and Biochemical Parasitology, 2001, 116, 11-16.	0.5	24
61	Isolation of Developmentally Regulated Genes from <i>Toxoplasma gondii</i> by a Gene Trap with the Positive and Negative Selectable Marker Hypoxanthine-Xanthine-Guanine Phosphoribosyltransferase. Molecular and Cellular Biology, 1998, 18, 807-814.	1.1	86
62	Genetic and biochemical analysis of development in Toxoplasma gondii. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1347-1354.	1.8	99