Jennifer L. Morrell-Falvey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6875323/publications.pdf

Version: 2024-02-01

76 papers 2,889 citations

30 h-index 51 g-index

85 all docs 85 docs citations

85 times ranked 4128 citing authors

#	Article	IF	CITATIONS
1	Effector MiSSP7 of the mutualistic fungus <i>Laccaria bicolor</i> stabilizes the <i>Populus</i> JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8299-8304.	7.1	329
2	Cytotoxicity Induced by Engineered Silver Nanocrystallites Is Dependent on Surface Coatings and Cell Types. Langmuir, 2012, 28, 2727-2735.	3. 5	222
3	An anillin homologue, Mid2p, acts during fission yeast cytokinesis to organize the septin ring and promote cell separation. Journal of Cell Biology, 2003, 160, 1093-1103.	5.2	138
4	<i>Pseudomonas fluorescens</i> Induces Strain-Dependent and Strain-Independent Host Plant Responses in Defense Networks, Primary Metabolism, Photosynthesis, and Fitness. Molecular Plant-Microbe Interactions, 2012, 25, 765-778.	2.6	100
5	Global Molecular and Morphological Effects of 24-Hour Chromium(VI) Exposure on Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 2006, 72, 6331-6344.	3.1	96
6	Highly Efficient Isolation of Populus Mesophyll Protoplasts and Its Application in Transient Expression Assays. PLoS ONE, 2012, 7, e44908.	2.5	89
7	Integrating engineering design improvements with exoelectrogen enrichment process to increase power output from microbial fuel cells. Journal of Power Sources, 2009, 191, 520-527.	7.8	86
8	Role of Septins and the Exocyst Complex in the Function of Hydrolytic Enzymes Responsible for Fission Yeast Cell Separation. Molecular Biology of the Cell, 2005, 16, 4867-4881.	2.1	84
9	Requirements of Fission Yeast Septins for Complex Formation, Localization, and Function. Molecular Biology of the Cell, 2004, 15, 5551-5564.	2.1	78
10	The Spindle Pole Body Protein Cdc11p Links Sid4p to the Fission Yeast Septation Initiation Network. Molecular Biology of the Cell, 2002, 13, 1203-1214.	2.1	76
11	A Mutant of Arp2p Causes Partial Disassembly of the Arp2/3 Complex and Loss of Cortical Actin Function in Fission Yeast. Molecular Biology of the Cell, 1999, 10, 4201-4215.	2.1	66
12	The GIN4 family kinase, Cdr2p, acts independently of septins in fission yeast. Journal of Cell Science, 2004, 117, 5293-5302.	2.0	66
13	Sid4p-Cdc11p Assembles the Septation Initiation Network and Its Regulators at the S. pombe SPB. Current Biology, 2004, 14, 579-584.	3.9	66
14	Function of a Chemotaxis-Like Signal Transduction Pathway in Modulating Motility, Cell Clumping, and Cell Length in the Alphaproteobacterium <i>Azospirillum brasilense</i> . Journal of Bacteriology, 2008, 190, 6365-6375.	2.2	64
15	SEPH, a Cdc7p orthologue from Aspergillus nidulans, functions upstream of actin ring formation during cytokinesis. Molecular Microbiology, 2008, 42, 3-12.	2.5	62
16	Coupled Mercury–Cell Sorption, Reduction, and Oxidation on Methylmercury Production by <i>Geobacter sulfurreducens</i> PCA. Environmental Science &	10.0	60
17	Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes. PLoS ONE, 2015, 10, e0137716.	2.5	58
18	Pore-scale hydrodynamics influence the spatial evolution of bacterial biofilms in a microfluidic porous network. PLoS ONE, 2019, 14, e0218316.	2.5	55

#	Article	IF	Citations
19	Study of Cyclin Proteolysis in Anaphase-Promoting Complex (APC) Mutant Cells Reveals the Requirement for APC Function in the Final Steps of the Fission Yeast Septation Initiation Network. Molecular and Cellular Biology, 2001, 21, 6681-6694.	2.3	49
20	Cell wall remodeling at the fission yeast cell division site requires the Rho-GEF Rgf3p. Journal of Cell Science, 2005, 118, 5563-5573.	2.0	49
21	A Carotenoid-Deficient Mutant in Pantoea sp. YR343, a Bacteria Isolated from the Rhizosphere of Populus deltoides, Is Defective in Root Colonization. Frontiers in Microbiology, 2016, 7, 491.	3.5	48
22	Microarrays of Biomimetic Cells Formed by the Controlled Synthesis of Carbon Nanofiber Membranes. Nano Letters, 2004, 4, 1809-1814.	9.1	45
23	Measuring cell surface elasticity on enteroaggregative Escherichia coli wild type and dispersin mutant by AFM. Ultramicroscopy, 2006, 106, 695-702.	1.9	44
24	Mediation of plant–mycorrhizal interaction by a lectin receptor-like kinase. Nature Plants, 2019, 5, 676-680.	9.3	42
25	Stochastic Assembly of Bacteria in Microwell Arrays Reveals the Importance of Confinement in Community Development. PLoS ONE, 2016, 11, e0155080.	2.5	42
26	The fission yeast septation initiation network (SIN) kinase, Sid2, is required for SIN asymmetry and regulates the SIN scaffold, Cdc11. Molecular Biology of the Cell, 2012, 23, 1636-1645.	2.1	40
27	A novel pH-dependent membrane peptide that binds to EphA2 and inhibits cell migration. ELife, 2018, 7, .	6.0	36
28	Schizosaccharomyces pombe Git7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation. Eukaryotic Cell, 2002, 1, 558-567.	3.4	35
29	Metabolic Adaptations of Azospirillum brasilense to Oxygen Stress by Cell-to-Cell Clumping and Flocculation. Applied and Environmental Microbiology, 2015, 81, 8346-8357.	3.1	35
30	Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express, 2011, 1, 30.	3.0	34
31	Quantifying the Spatiotemporal Dynamics of Plant Root Colonization by Beneficial Bacteria in a Microfluidic Habitat. Advanced Biology, 2018, 2, 1800048.	3.0	31
32	Plant–Microbe Interactions: From Genes to Ecosystems Using <i>Populus</i> as a Model System. Phytobiomes Journal, 2021, 5, 29-38.	2.7	31
33	Automated image analysis of atomic force microscopy images of rotavirus particles. Ultramicroscopy, 2006, 106, 829-837.	1.9	30
34	Raman chemical imaging of the rhizosphere bacterium Pantoea sp. YR343 and its co-culture with Arabidopsis thaliana. Analyst, The, 2016, 141, 2175-2182.	3.5	30
35	Lectin-Functionalized Poly(glycidyl methacrylate)- <i>block</i> -poly(vinyldimethyl azlactone) Surface Scaffolds for High Avidity Microbial Capture. Biomacromolecules, 2013, 14, 3742-3748.	5.4	28
36	Characterization of Indole-3-acetic Acid Biosynthesis and the Effects of This Phytohormone on the Proteome of the Plant-Associated Microbe <i>Pantoea</i> sp. YR343. Journal of Proteome Research, 2018, 17, 1361-1374.	3.7	28

#	Article	IF	Citations
37	Mounting of Escherichia coli spheroplasts for AFM imaging. Ultramicroscopy, 2005, 105, 96-102.	1.9	26
38	Alkyl hydroperoxide reductase has a role in oxidative stress resistance and in modulating changes in cell-surface properties in Azospirillum brasilense Sp245. Microbiology (United Kingdom), 2009, 155, 1192-1202.	1.8	26
39	Lipid Droplets Form from Distinct Regions of the Cell in the Fission Yeast <i>Schizosaccharomyces pombe</i> . Traffic, 2016, 17, 657-669.	2.7	26
40	A General System for Studying Proteinâ 'Protein Interactions in Gram-Negative Bacteria. Journal of Proteome Research, 2008, 7, 3319-3328.	3.7	24
41	Labeling of Phosphatidylinositol Lipid Products in Cells through Metabolic Engineering by Using a Clickable <i>myo</i> â€lnositol Probe. ChemBioChem, 2019, 20, 172-180.	2.6	24
42	Unexpected Effects of Gene Deletion on Interactions of Mercury with the Methylation-Deficient Mutant \hat{l} " <i>hgcAB</i> . Environmental Science and Technology Letters, 2014, 1, 271-276.	8.7	22
43	Proteomics-Based Tools for Evaluation of Cell-Free Protein Synthesis. Analytical Chemistry, 2017, 89, 11443-11451.	6.5	21
44	Volume labeling with Alexa Fluor dyes and surface functionalization of highly sensitive fluorescent silica (SiO2) nanoparticles. Nanoscale, 2013, 5, 10369.	5.6	20
45	Evaluation of Affinity-Tagged Protein Expression Strategies Using Local and Global Isotope Ratio Measurements. Journal of Proteome Research, 2009, 8, 3675-3688.	3.7	18
46	Arabidopsis Câ€ŧerminal binding protein ANGUSTIFOLIA modulates transcriptional coâ€regulation of <i>MYB46</i> and <i>WRKY33</i> New Phytologist, 2020, 228, 1627-1639.	7.3	17
47	Modification of plant cell wall chemistry impacts metabolome and microbiome composition in Populus PdKOR1 RNAi plants. Plant and Soil, 2018, 429, 349-361.	3.7	16
48	Mathematical modeling of hydrolysate diffusion and utilization in cellulolytic biofilms of the extreme thermophile Caldicellulosiruptor obsidiansis. Bioresource Technology, 2011, 102, 3155-3162.	9.6	15
49	Characterization of cell surface and extracellular matrix remodeling of Azospirillum brasilense chemotaxis-like 1 signal transduction pathway mutants by atomic force microscopy. FEMS Microbiology Letters, 2011, 314, 131-139.	1.8	14
50	Loss of carotenoids from membranes of Pantoea sp. YR343 results in altered lipid composition and changes in membrane biophysical properties. Biochimica Et Biophysica Acta - Biomembranes, 2019, 1861, 1338-1345.	2.6	14
51	Simultaneous Discovery of Positive and Negative Interactions Among Rhizosphere Bacteria Using Microwell Recovery Arrays. Frontiers in Microbiology, 2020, 11, 601788.	3. 5	14
52	Towards engineering ectomycorrhization into switchgrass bioenergy crops via a lectin receptorâ€ike kinase. Plant Biotechnology Journal, 2021, 19, 2454-2468.	8.3	14
53	The effect of retinal pigment epithelial cell patch size on growth factor expression. Biomaterials, 2014, 35, 3999-4004.	11.4	13
54	Microstructured Block Copolymer Surfaces for Control of Microbe Adhesion and Aggregation. Biosensors, 2014, 4, 63-75.	4.7	9

#	Article	IF	Citations
55	Integrated Proteomics and Lipidomics Reveal That the Swarming Motility of Paenibacillus polymyxa Is Characterized by Phospholipid Modification, Surfactant Deployment, and Flagellar Specialization Relative to Swimming Motility. Frontiers in Microbiology, 2019, 10, 2594.	3.5	9
56	Computationally Guided Discovery and Experimental Validation of Indole-3-acetic Acid Synthesis Pathways. ACS Chemical Biology, 2019, 14, 2867-2875.	3.4	8
57	Carbon Nanofiber Arrays: A Novel Tool for Microdelivery of Biomolecules to Plants. PLoS ONE, 2016, 11, e0153621.	2.5	7
58	Determination of the cellulase activity distribution in Clostridium thermocellum and Caldicellulosiruptor obsidiansis cultures using a fluorescent substrate. Journal of Environmental Sciences, 2015, 34, 212-218.	6.1	6
59	A carotenoid-deficient mutant of the plant-associated microbe Pantoea sp. YR343 displays an altered membrane proteome. Scientific Reports, 2020, 10, 14985.	3.3	6
60	Identification of a diguanylate cyclase expressed in the presence of plants and its application for discovering candidate gene products involved in plant colonization by Pantoea sp. YR343. PLoS ONE, 2021, 16, e0248607.	2.5	5
61	Application of Machine Learning Techniques to an Agent-Based Model of Pantoea. Frontiers in Microbiology, 2021, 12, 726409.	3.5	5
62	Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2020, 45, 3087.	3.3	5
63	Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy. Journal of Environmental Sciences, 2013, 25, 849-856.	6.1	4
64	Analysis of the Role of Phosphorylation in Fission Yeast Cdc13p/CyclinB Function. Journal of Biological Chemistry, 2005, 280, 14591-14596.	3.4	3
65	Development of an Experimental Approach to Achieve Spatially Resolved Plant Root-Associated Metaproteomics Using an Agar-Plate System. Molecular Plant-Microbe Interactions, 2022, 35, 639-649.	2.6	3
66	An in vivo imaging-based assay for detecting protein interactions over a wide range of binding affinities. Analytical Biochemistry, 2009, 395, 166-177.	2.4	2
67	Spatially co-registered wide-field nonlinear optical imaging of living and complex biosystems in a total internal reflection geometry. Analyst, The, 2021, 146, 3062-3072.	3.5	2
68	Automated Image Analysis of Fluorescence Microscopic Images to Identify Protein-protein Interactions., 2005, 2006, 797-800.		1
69	Automated Analysis of Fluorescence Microscopy Images to Identify Protein-Protein Interactions. International Journal of Biomedical Imaging, 2006, 2006, 1-10.	3.9	1
70	Analysis of tight junction formation and integrity., 2012, 2012, 3724-7.		1
71	Using Raman spectroscopy and SERS for in situ studies of rhizosphere bacteria. , 2015, 9550, .		1
72	Nano-Enabled Approaches to Chemical Imaging in Biosystems. Annual Review of Analytical Chemistry, 2018, 11, 351-373.	5.4	1

#	Article	IF	CITATIONS
73	Loss of Carotenoids Impacts Membrane Protein and Lipid Distribution in Pantoea sp. YR343. Biophysical Journal, 2018, 114, 98a.	0.5	1
74	Developing in vitro models of the sub-retinal microenvironment. , 2013, , .		0
75	A Novel Membrane Peptide that Inhibits Cell Migration by Activation of the Receptor Tyrosine Kinase EphA2. Biophysical Journal, 2018, 114, 265a.	0.5	O
76	Total internal reflection enabled wide-field coherent anti-Stokes Raman scattering microscopy. Optics Letters, 2020, 45, 3087.	3.3	0