Michel Godin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6874042/publications.pdf

Version: 2024-02-01

46 3,034 24 47
papers citations h-index g-index

49 49 49 3872 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Time dependent stress relaxation and recovery in mechanically strained 3D microtissues. APL Bioengineering, 2020, 4, 036107.	3.3	10
2	Mechanical stretch sustains myofibroblast phenotype and function in microtissues through latent TGF- \hat{l}^21 activation. Integrative Biology (United Kingdom), 2020, 12, 199-210.	0.6	15
3	Digital counting of nucleic acid targets using solid-state nanopores. Nanoscale, 2020, 12, 17833-17840.	2.8	8
4	Structural and mechanical remodeling of the cytoskeleton maintains tensional homeostasis in 3D microtissues under acute dynamic stretch. Scientific Reports, 2020, 10, 7696.	1.6	49
5	DNA Capture by Nanopore Sensors under Flow. Analytical Chemistry, 2020, 92, 8108-8116.	3.2	19
6	Deterministic paracrine repair of injured myocardium using microfluidic-based cocooning of heart explant-derived cells. Biomaterials, 2020, 247, 120010.	5.7	16
7	Optofluidic label-free SERS platform for rapid bacteria detection in serum. Sensors and Actuators B: Chemical, 2019, 300, 126907.	4.0	40
8	Programmable DNA Nanoswitch Sensing with Solid-State Nanopores. ACS Sensors, 2019, 4, 2458-2464.	4.0	23
9	Time dependence of cellular responses to dynamic and complex strain fields. Integrative Biology (United Kingdom), 2019, 11, 4-15.	0.6	3
10	Strategies for controlling egress of therapeutic cells from hydrogel microcapsules. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 612-624.	1.3	12
11	Measuring Single-Cell Phenotypic Growth Heterogeneity Using a Microfluidic Cell Volume Sensor. Scientific Reports, 2018, 8, 17809.	1.6	9
12	A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomedical Microdevices, 2018, 20, 43.	1.4	18
13	Measuring mechanodynamics in an unsupported epithelial monolayer grown at an air–water interface. Molecular Biology of the Cell, 2017, 28, 111-119.	0.9	3
14	Nanopore Sensors: Manipulating Electrical and Fluidic Access in Integrated Nanoporeâ€Microfluidic Arrays Using Microvalves (Small 10/2017). Small, 2017, 13, .	5. 2	2
15	Cellular orientation is guided by strain gradients. Integrative Biology (United Kingdom), 2017, 9, 607-618.	0.6	27
16	Manipulating Electrical and Fluidic Access in Integrated Nanoporeâ€Microfluidic Arrays Using Microvalves. Small, 2017, 13, 1602601.	5.2	30
17	ldentifying Structure in Short DNA Scaffolds Using Solid-State Nanopores. ACS Sensors, 2017, 2, 1814-1820.	4.0	30
18	Physical confinement signals regulate the organization of stem cells in three dimensions. Journal of the Royal Society Interface, 2016, 13, 20160613.	1.5	11

#	Article	IF	CITATIONS
19	Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. Lab on A Chip, 2015, 15, 1407-1411.	3.1	67
20	Quantifying the volume of single cells continuously using a microfluidic pressure-driven trap with media exchange. Biomicrofluidics, 2014, 8, 011101.	1.2	13
21	A microscale anisotropic biaxial cell stretching device for applications in mechanobiology. Biotechnology Letters, 2014, 36, 657-665.	1.1	43
22	Using active microfluidic flow focusing to sort particles and cells based on high-resolution volume measurements. Microelectronic Engineering, 2014, 118, 35-40.	1.1	11
23	Field-Flow Fractionation and Hydrodynamic Chromatography on a Microfluidic Chip. Analytical Chemistry, 2013, 85, 5981-5988.	3.2	19
24	Three dimensional spatial separation of cells in response to microtopography. Biomaterials, 2013, 34, 8097-8104.	5.7	43
25	Hollow core photonic crystal fiber as a robust Raman biosensor. Proceedings of SPIE, 2013, , .	0.8	2
26	Hollow core photonic crystal fiber as a reusable Raman biosensor. Optics Express, 2013, 21, 12340.	1.7	42
27	Fine-tuning the Size and Minimizing the Noise of Solid-state Nanopores. Journal of Visualized Experiments, 2013, , e51081.	0.2	10
28	Precise control of the size and noise of solid-state nanopores using high electric fields. Nanotechnology, 2012, 23, 405301.	1.3	78
29	Using the fringing electric field in microfluidic volume sensors to enhance sensitivity and accuracy. Applied Physics Letters, 2012, 101, .	1.5	12
30	Microfluidic cell volume sensor with tunable sensitivity. Lab on A Chip, 2012, 12, 3016.	3.1	25
31	Using buoyant mass to measure the growth of single cells. Nature Methods, 2010, 7, 387-390.	9.0	338
32	Cantilever-based sensing: the origin of surface stress and optimization strategies. Nanotechnology, 2010, 21, 075501.	1.3	117
33	Mass-based readout for agglutination assays. Applied Physics Letters, 2007, 91, .	1.5	12
34	Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Applied Physics Letters, 2007, 91, 123121.	1.5	159
35	Integrated microelectronic device for label-free nucleic acid amplification and detection. Lab on A Chip, 2007, 7, 347.	3.1	27
36	Microcantilever-Based Sensors:  Effect of Morphology, Adhesion, and Cleanliness of the Sensing Surface on Surface Stress. Analytical Chemistry, 2007, 79, 8136-8143.	3.2	64

#	Article	lF	CITATIONS
37	A complete analysis of the laser beam deflection systems used in cantilever-based systems. Ultramicroscopy, 2007, 107, 422-430.	0.8	53
38	Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature, 2007, 446, 1066-1069.	13.7	1,089
39	Label-Free Microelectronic PCR Quantification. Analytical Chemistry, 2006, 78, 2526-2531.	3.2	37
40	Monitoring of heparin and its low-molecular-weight analogs by silicon field effect. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 13374-13379.	3.3	29
41	Calibrating laser beam deflection systems for use in atomic force microscopes and cantilever sensors. Applied Physics Letters, 2006, 88, 083108.	1.5	28
42	A differential microcantilever-based system for measuring surface stress changes induced by electrochemical reactions. Sensors and Actuators B: Chemical, 2005, 107, 233-241.	4.0	53
43	Redox-Induced Surface Stress of Polypyrrole-Based Actuators. Journal of Physical Chemistry B, 2005, 109, 17531-17537.	1.2	44
44	Surface Stress, Kinetics, and Structure of Alkanethiol Self-Assembled Monolayers. Langmuir, 2004, 20, 7090-7096.	1.6	167
45	Combined in situ micromechanical cantilever-based sensing and ellipsometry. Review of Scientific Instruments, 2003, 74, 4902-4907.	0.6	35
46	Quantitative surface stress measurements using a microcantilever. Applied Physics Letters, 2001, 79, 551-553.	1.5	86