
Lyndon D Estes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6873440/publications.pdf Version: 2024-02-01

LVNDON D FSTES

#	Article	IF	CITATIONS
1	Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields. Hydrology and Earth System Sciences, 2021, 25, 1827-1847.	4.9	23
2	Consequences of underexplored variation in biodiversity indices used for landâ€use prioritization. Ecological Applications, 2021, 31, e02396.	3.8	2
3	Perceived links between climate change and weather forecast accuracy: new barriers to tools for agricultural decision-making. Climatic Change, 2021, 168, 1.	3.6	9
4	High Resolution, Annual Maps of Field Boundaries for Smallholder-Dominated Croplands at National Scales. Frontiers in Artificial Intelligence, 2021, 4, 744863.	3.4	13
5	High-spatiotemporal-resolution mapping of global urban change from 1985 to 2015. Nature Sustainability, 2020, 3, 564-570.	23.7	391
6	Tropical forest loss enhanced by large-scale land acquisitions. Nature Geoscience, 2020, 13, 482-488.	12.9	87
7	Understanding social and environmental determinants of piecework labor in smallholder agricultural systems. Applied Geography, 2020, 121, 102243.	3.7	0
8	A blended census and multiscale remote sensing approach to probabilistic cropland mapping in complex landscapes. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 161, 233-245.	11.1	18
9	Nano and Micro Unmanned Aerial Vehicles (UAVs): A New Grand Challenge for Precision Agriculture?. Current Protocols in Plant Biology, 2020, 5, e20103.	2.8	13
10	Accounting for Training Data Error in Machine Learning Applied to Earth Observations. Remote Sensing, 2020, 12, 1034.	4.0	49
11	Integrated approaches to understanding and reducing drought impact on food security across scales. Current Opinion in Environmental Sustainability, 2019, 40, 43-54.	6.3	63
12	Probabilistic global maps of crop-specific areas from 1961 to 2014. Environmental Research Letters, 2019, 14, 094023.	5.2	14
13	A high-frequency mobile phone data collection approach for research in social-environmental systems: Applications in climate variability and food security in sub-Saharan Africa. Environmental Modelling and Software, 2019, 119, 57-69.	4.5	13
14	Cognitive Biases about Climate Variability in Smallholder Farming Systems in Zambia. Weather, Climate, and Society, 2019, 11, 369-383.	1.1	29
15	Measurements and Observations in the XXI century (MOXXI): innovation and multi-disciplinarity to sense the hydrological cycle. Hydrological Sciences Journal, 2018, 63, 169-196.	2.6	151
16	The spatial and temporal domains of modern ecology. Nature Ecology and Evolution, 2018, 2, 819-826.	7.8	126
17	A largeâ€∎rea, spatially continuous assessment of land cover map error and its impact on downstream analyses. Global Change Biology, 2018, 24, 322-337.	9.5	42
18	Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nature Geoscience, 2018, 11, 556-562.	12.9	168

Lyndon D Estes

#	Article	IF	CITATIONS
19	Comparing empirical and survey-based yield forecasts in a dryland agro-ecosystem. Agricultural and Forest Meteorology, 2018, 262, 147-156.	4.8	17
20	On the Use of Unmanned Aerial Systems for Environmental Monitoring. Remote Sensing, 2018, 10, 641.	4.0	433
21	Climate mitigation from vegetation biophysical feedbacks during the past three decades. Nature Climate Change, 2017, 7, 432-436.	18.8	323
22	Biodiversity at risk under future cropland expansion and intensification. Nature Ecology and Evolution, 2017, 1, 1129-1135.	7.8	219
23	A generalized computer vision approach to mapping crop fields in heterogeneous agricultural landscapes. Remote Sensing of Environment, 2016, 179, 210-221.	11.0	70
24	Reconciling agriculture, carbon and biodiversity in a savannah transformation frontier. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150316.	4.0	33
25	The influence of climate variability on internal migration flows in South Africa. Global Environmental Change, 2016, 39, 155-169.	7.8	113
26	A platform for crowdsourcing the creation of representative, accurate landcover maps. Environmental Modelling and Software, 2016, 80, 41-53.	4.5	36
27	Mapping Cropland in Smallholder-Dominated Savannas: Integrating Remote Sensing Techniques and Probabilistic Modeling. Remote Sensing, 2015, 7, 15295-15317.	4.0	21
28	High carbon and biodiversity costs from converting Africa's wet savannahs to cropland. Nature Climate Change, 2015, 5, 481-486.	18.8	105
29	Using Changes in Agricultural Utility to Quantify Future Climateâ€Induced Risk to Conservation. Conservation Biology, 2014, 28, 427-437.	4.7	7
30	Changing water availability during the African maize-growing season, 1979–2010. Environmental Research Letters, 2014, 9, 075005.	5.2	15
31	Climate change must not blow conservation off course. Nature, 2013, 500, 271-272.	27.8	29
32	Projected climate impacts to <scp>S</scp> outh <scp>A</scp> frican maize and wheat production in 2055: a comparison of empirical and mechanistic modeling approaches. Global Change Biology, 2013, 19, 3762-3774.	9.5	59
33	Comparing mechanistic and empirical model projections of crop suitability and productivity: implications for ecological forecasting. Global Ecology and Biogeography, 2013, 22, 1007-1018.	5.8	102
34	Predicting how adaptation to climate change could affect ecological conservation: secondary impacts of shifting agricultural suitability. Diversity and Distributions, 2012, 18, 425-437.	4.1	50
35	Predictive distribution modeling with enhanced remote sensing and multiple validation techniques to support mountain bongo antelope recovery. Animal Conservation, 2011, 14, 521-532.	2.9	10
36	The use of non-invasive molecular techniques to confirm the presence of mountain bongo Tragelaphus eurycerus isaaci populations in Kenya and preliminary inference of their mitochondrial genetic variation. Conservation Genetics, 2011, 12, 745-751.	1.5	18

Lyndon D Estes

#	Article	IF	CITATIONS
37	Remote sensing of structural complexity indices for habitat and species distribution modeling. Remote Sensing of Environment, 2010, 114, 792-804.	11.0	53
38	Climate change: helping nature survive the human response. Conservation Letters, 2010, 3, 304-312.	5.7	84
39	Habitat selection by a rare forest antelope: A multi-scale approach combining field data and imagery from three sensors. Remote Sensing of Environment, 2008, 112, 2033-2050.	11.0	46