
Michael Gurevitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mapping the interaction surface of scorpion β-toxins with an insect sodium channel. Biochemical Journal, 2021, 478, 2843-2869.	3.7	7
2	Charge substitutions at the voltage-sensing module of domain III enhance actions of site-3 and site-4 toxins on an insect sodium channel. Insect Biochemistry and Molecular Biology, 2021, 137, 103625.	2.7	2
3	Ferredoxin-mediated reduction of 2-nitrothiophene inhibits photosynthesis: mechanism and herbicidal potential. Biochemical Journal, 2020, 477, 1149-1158.	3.7	1
4	Pore-modulating toxins exploit inherent slow inactivation to block K ⁺ channels. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18700-18709.	7.1	23
5	The drug ornidazole inhibits photosynthesis in a different mechanism described for protozoa and anaerobic bacteria. Biochemical Journal, 2016, 473, 4413-4426.	3.7	14
6	The specificity of Av3 sea anemone toxin for arthropods is determined at linker DI/SS2–S6Âin the pore module of target sodium channels. Biochemical Journal, 2014, 463, 271-277.	3.7	12
7	Sequence variations at I260 and A1731 contribute to persistent currents in Drosophila sodium channels. Neuroscience, 2014, 268, 297-308.	2.3	3
8	Mapping the Interaction Site for a β-Scorpion Toxin in the Pore Module of Domain III of Voltage-gated Na+ Channels. Journal of Biological Chemistry, 2012, 287, 30719-30728.	3.4	67
9	Mapping of scorpion toxin receptor sites at voltage-gated sodium channels. Toxicon, 2012, 60, 502-511.	1.6	70
10	Mapping the receptor site for α-scorpion toxins on a Na ⁺ channel voltage sensor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15426-15431.	7.1	125
11	Structure-Function Map of the Receptor Site for β-Scorpion Toxins in Domain II of Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2011, 286, 33641-33651.	3.4	76
12	Elucidation of the Molecular Basis of Selective Recognition Uncovers the Interaction Site for the Core Domain of Scorpion α-Toxins on Sodium Channels. Journal of Biological Chemistry, 2011, 286, 35209-35217.	3.4	44
13	Substitutions in the Domain III Voltage-sensing Module Enhance the Sensitivity of an Insect Sodium Channel to a Scorpion β-Toxin. Journal of Biological Chemistry, 2011, 286, 15781-15788.	3.4	22
14	Coupling between Residues on S4 and S1 Defines the Voltage-Sensor Resting Conformation in NaChBac. Biophysical Journal, 2010, 99, 456-463.	0.5	18
15	Molecular analysis of the sea anemone toxin Av3 reveals selectivity to insects and demonstrates the heterogeneity of receptor site-3 on voltage-gated Na+ channels. Biochemical Journal, 2007, 406, 41-48.	3.7	51
16	The insecticidal potential of scorpion β-toxins. Toxicon, 2007, 49, 473-489.	1.6	124
17	X-ray Structure and Mutagenesis of the Scorpion Depressant Toxin LqhIT2 Reveals Key Determinants Crucial for Activity and Anti-Insect Selectivity. Journal of Molecular Biology, 2007, 366, 586-601.	4.2	58
18	Direct Evidence That Receptor Site-4 of Sodium Channel Gating Modifiers Is Not Dipped in the Phospholipid Bilayer of Neuronal Membranes. Journal of Biological Chemistry, 2006, 281, 20673-20679.	3.4	30

MICHAEL GUREVITZ

#	Article	lF	CITATIONS
19	Common Features in the Functional Surface of Scorpion β-Toxins and Elements That Confer Specificity for Insect and Mammalian Voltage-gated Sodium Channels. Journal of Biological Chemistry, 2005, 280, 5045-5053.	3.4	93
20	ldentification of Amino Acid Residues in the Insect Sodium Channel Critical for Pyrethroid Binding. Molecular Pharmacology, 2005, 67, 513-522.	2.3	120
21	Genetic Polymorphism and Expression of a Highly Potent Scorpion Depressant Toxin Enable Refinement of the Effects on Insect Na Channels and Illuminate the Key Role of Asn-58. Biochemistry, 2005, 44, 9179-9187.	2.5	36
22	Dissection of the Functional Surface of an Anti-insect Excitatory Toxin Illuminates a Putative "Hot Spot―Common to All Scorpion β-Toxins Affecting Na+ Channels. Journal of Biological Chemistry, 2004, 279, 8206-8211.	3.4	65
23	Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Letters, 2003, 537, 106-110.	2.8	54
24	Scorpion neurotoxins: structure/function relationships and application in agriculture. Pest Management Science, 2000, 56, 472-474.	3.4	23
25	Activation of cyanobacterial RuBP-carboxylase/oxygenase is facilitated by inorganic phosphate via two independent mechanisms. FEBS Journal, 2000, 267, 5995-6003.	0.2	36
26	Dynamic Diversification from a Putative Common Ancestor of Scorpion Toxins Affecting Sodium, Potassium, and Chloride Channels. Journal of Molecular Evolution, 1999, 48, 187-196.	1.8	129
27	The Putative Bioactive Surface of Insect-selective Scorpion Excitatory Neurotoxins. Journal of Biological Chemistry, 1999, 274, 5769-5776.	3.4	93
28	Baculovirus-mediated expression of a scorpion depressant toxin improves the insecticidal efficacy achieved with excitatory toxins. FEBS Letters, 1998, 422, 132-136.	2.8	75
29	Functional Anatomy of Scorpion Toxins Affecting Sodium Channels. Toxin Reviews, 1998, 17, 131-159.	1.5	168
30	Membrane potential modulators: a thread of scarlet from plants to humans. FASEB Journal, 1998, 12, 1793-1796.	0.5	61
31	In VitroFolding and Functional Analysis of an Anti-insect Selective Scorpion Depressant Neurotoxin Produced inEscherichia coli. Protein Expression and Purification, 1997, 10, 123-131.	1.3	56
32	Refined electrophysiological analysis suggests that a depressant toxin is a sodium channel opener rather than a blocker. Life Sciences, 1997, 61, 819-830.	4.3	31
33	Functional Expression and Genetic Alteration of an Alpha Scorpion Neurotoxinâ€. Biochemistry, 1996, 35, 10215-10222.	2.5	92
34	Functional expression of an alpha anti-insect scorpion neurotoxin in insect cells and lepidopterous larvae. FEBS Letters, 1995, 376, 181-184.	2.8	58
35	Advances in Molecular Genetics of Scorpion Neurotoxins. Toxin Reviews, 1994, 13, 65-100.	1.5	16
36	lsolation and characterization of the ccmM gene required by the cyanobacterium Synechocystis PCC6803 for inorganic carbon utilization. Photosynthesis Research, 1994, 39, 183-190.	2.9	21

MICHAEL GUREVITZ

#	Article	IF	CITATIONS
37	Insect Specific Neurotoxins from Scorpion Venom that Affect Sodium Current Inactivation. Toxin Reviews, 1994, 13, 25-43.	1.5	22
38	Depressant insect selective neurotoxins from scorpion venom: Chemistry, action, and gene cloning. Archives of Insect Biochemistry and Physiology, 1993, 22, 55-73.	1.5	62
39	Restoration of the wild-type locus in an RuBP carboxylase/oxygenase mutant of Synecbocystis PCC 6803 via targeted gene recombination. Molecular Genetics and Genomics, 1992, 235, 247-252.	2.4	2
40	Nucleotide sequence and structure analysis of a cDNA encoding an alpha insect toxin from the scorpion Leiurus quinquestriatus hebraeus. Toxicon, 1991, 29, 1270-1272.	1.6	27
41	Characterization of the transcript for a depressant insect selective neurotoxin gene with an isolated cDNA clone from the scorpionButhotus judaicus. FEBS Letters, 1990, 269, 229-232.	2.8	16