
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6873230/publications.pdf Version: 2024-02-01

<u> Βεςμαν Ν Ζοροαν</u>

#	Article	IF	CITATIONS
1	Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166352.	1.8	4
2	Divergent Cardiac Effects of Angiotensin II and Isoproterenol Following Juvenile Exposure to Doxorubicin. Frontiers in Cardiovascular Medicine, 2022, 9, 742193.	1.1	3
3	EA.hy926 Cells and HUVECs Share Similar Senescence Phenotypes but Respond Differently to the Senolytic Drug ABT-263. Cells, 2022, 11, 1992.	1.8	8
4	Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. , 2021, 221, 107751.		22
5	Response to Schoormans. Journal of the National Cancer Institute, 2021, 113, 214-215.	3.0	1
6	Metformin Modulates Doxorubicinâ€induced Senescence Phenotype in Endothelial Cells. FASEB Journal, 2021, 35, .	0.2	1
7	Resveratrol reduces cardiac NLRP3â€inflammasome activation and systemic inflammation to lessen doxorubicinâ€induced cardiotoxicity in juvenile mice. FEBS Letters, 2021, 595, 1681-1695.	1.3	30
8	Doxorubicin Paradoxically Ameliorates Tumor-Induced Inflammation in Young Mice. International Journal of Molecular Sciences, 2021, 22, 9023.	1.8	3
9	Identification of new candidate biomarkers to support doxorubicin treatments in canine cancer patients. BMC Veterinary Research, 2021, 17, 378.	0.7	4
10	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. PLoS ONE, 2020, 15, e0232507.	1.1	21
11	CYP1B1 as a therapeutic target in cardio-oncology. Clinical Science, 2020, 134, 2897-2927.	1.8	21
12	Sexual Dimorphism in Doxorubicin-induced Systemic Inflammation: Implications for Hepatic Cytochrome P450 Regulation. International Journal of Molecular Sciences, 2020, 21, 1279.	1.8	13
13	Doxorubicin Cardiotoxicity in Young Tumorâ€Bearing Mice. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
14	Abstract 411: Absence of Sexual Dimorphism in Isoproterenol-induced Cardiac Dysfunction in C57BL/6 Mice. Circulation Research, 2020, 127, .	2.0	0
15	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		Ο
16	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		0
17	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		0
18	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		0

#	Article	IF	CITATIONS
19	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		Ο
20	Lack of sexual dimorphism in a mouse model of isoproterenol-induced cardiac dysfunction. , 2020, 15, e0232507.		0
21	Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients, 2019, 11, 627.	1.7	27
22	Sexual dimorphism of acute doxorubicin-induced nephrotoxicity in C57Bl/6 mice. PLoS ONE, 2019, 14, e0212486.	1.1	21
23	Sexually Dimorphic Regulation of Renal Soluble Epoxide Hydrolase by Acute Doxorubicinâ€Induced Toxicity. FASEB Journal, 2019, 33, 678.8.	0.2	0
24	Abstract 266: Sex Differences in Anthracycline-Induced Cardiotoxicity in Young Mice. Circulation Research, 2019, 125, .	2.0	0
25	Co-administration of resveratrol with doxorubicin in young mice attenuates detrimental late-occurring cardiovascular changes. Cardiovascular Research, 2018, 114, 1350-1359.	1.8	41
26	Anticancer effects of resveratrol in canine hemangiosarcoma cell lines. Veterinary and Comparative Oncology, 2018, 16, 253-261.	0.8	17
27	Psychosocial stress unmasks latent doxorubicin-induced cardiotoxicity. Journal of Molecular and Cellular Cardiology, 2018, 124, 93-94.	0.9	2
28	Clinical and preclinical evidence of sex-related differences in anthracycline-induced cardiotoxicity. Biology of Sex Differences, 2018, 9, 38.	1.8	50
29	Sex-dependent alteration of cardiac cytochrome P450 gene expression by doxorubicin in C57Bl/6 mice. Biology of Sex Differences, 2017, 8, 1.	1.8	35
30	The interplay between genetic background and sexual dimorphism of doxorubicin-induced cardiotoxicity. Cardio-Oncology, 2016, 2, 4.	0.8	17
31	AMPK deficiency in cardiac muscle results in dilated cardiomyopathy in the absence of changes in energy metabolism. Cardiovascular Research, 2015, 107, 235-245.	1.8	67
32	Preclinical and clinical evidence for the role of resveratrol in the treatment of cardiovascular diseases. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1155-1177.	1.8	252
33	Metabolomic Fingerprint of Heart Failure with Preserved Ejection Fraction. PLoS ONE, 2015, 10, e0124844.	1.1	150
34	The anti-proliferative effect of metformin in triple-negative MDA-MB-231 breast cancer cells is highly dependent on glucose concentration: Implications for cancer therapy and prevention. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1943-1957.	1.1	77
35	AMPK-Dependent Inhibitory Phosphorylation of ACC Is Not Essential for Maintaining Myocardial Fatty Acid Oxidation. Circulation Research, 2014, 115, 518-524.	2.0	43
36	Normoglycemia sensitizes MDAâ€MBâ€231 breast cancer cells to metformin through an AMPKâ€dependent mechanism (LB610). FASEB Journal, 2014, 28, LB610.	0.2	2

#	Article	IF	CITATIONS
37	Cardiomyocyte specific adipose triglyceride lipase overexpression prevents doxorubicin induced cardiac dysfunction in female mice. Heart, 2013, 99, 1041-1047.	1.2	15
38	Determination of the Dominant Arachidonic Acid Cytochrome P450 Monooxygenases in Rat Heart, Lung, Kidney, and Liver: Protein Expression and Metabolite Kinetics. AAPS Journal, 2013, 15, 112-122.	2.2	39
39	Resveratrol Prevents Hypertension and Cardiac Hypertrophy in Hypertensive Rodents. Canadian Journal of Diabetes, 2013, 37, S23.	0.4	2
40	Acute arsenic treatment alters cytochrome P450 expression and arachidonic acid metabolism in lung, liver and kidney of C57Bl/6 mice. Xenobiotica, 2013, 43, 719-729.	0.5	16
41	Role of cytochrome P450–mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metabolism Reviews, 2013, 45, 173-195.	1.5	41
42	Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1723-1733.	1.8	167
43	Differential effects of soluble epoxide hydrolase inhibition and CYP2J2 overexpression on postischemic cardiac function in aged mice. Prostaglandins and Other Lipid Mediators, 2013, 104-105, 8-17.	1.0	36
44	Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. American Journal of Physiology - Endocrinology and Metabolism, 2013, 305, E243-E253.	1.8	105
45	Soluble epoxide hydrolase inhibitor, <scp>TUPS</scp> , protects against isoprenalineâ€induced cardiac hypertrophy. British Journal of Pharmacology, 2013, 168, 1794-1807.	2.7	44
46	Acute arsenic toxicity alters cytochrome P450 and soluble epoxide hydrolase and their associated arachidonic acid metabolism in C57Bl/6 mouse heart. Xenobiotica, 2012, 42, 1235-1247.	0.5	26
47	Chronic Doxorubicin Cardiotoxicity Modulates Cardiac Cytochrome P450-Mediated Arachidonic Acid Metabolism in Rats. Drug Metabolism and Disposition, 2012, 40, 2126-2135.	1.7	40
48	Acute Doxorubicin Toxicity Differentially Alters Cytochrome P450 Expression and Arachidonic Acid Metabolism in Rat Kidney and Liver. Drug Metabolism and Disposition, 2011, 39, 1440-1450.	1.7	71
49	Inhibition of Soluble Epoxide Hydrolase Confers Cardioprotection and Prevents Cardiac Cytochrome P450 Induction by Benzo(a)pyrene. Journal of Cardiovascular Pharmacology, 2011, 57, 273-281.	0.8	28
50	Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. , 2010, 125, 446-463.		154
51	Acute doxorubicin cardiotoxicity alters cardiac cytochrome P450 expression and arachidonic acid metabolism in rats. Toxicology and Applied Pharmacology, 2010, 242, 38-46.	1.3	95
52	Acute Doxorubicin Toxicity Differentially Alters Cytochrome P450 Expression in the Kidney and Liver of Male Sprague Dawley Rats. Free Radical Biology and Medicine, 2010, 49, S75.	1.3	0
53	Alteration of cardiac cytochrome P450-mediated arachidonic acid metabolism in response to lipopolysaccharide-induced acute systemic inflammation. Pharmacological Research, 2010, 61, 410-418.	3.1	46
54	2,3,7,8-Tetrachlorodibenzo-p-dioxin and β-naphthoflavone induce cellular hypertrophy in H9c2 cells by an aryl hydrocarbon receptor-dependant mechanism. Toxicology in Vitro, 2010, 24, 863-871.	1.1	31

#	Article	IF	CITATIONS
55	Role of NF-κB in the Regulation of Cytochrome P450 Enzymes. Current Drug Metabolism, 2009, 10, 164-178.	0.7	152
56	3â€Methylcholanthrene and benzo(a)pyrene modulate cardiac cytochrome P450 gene expression and arachidonic acid metabolism in male Sprague Dawley rats. British Journal of Pharmacology, 2009, 158, 1808-1819.	2.7	59
57	Induction of several cytochrome P450 genes by doxorubicin in H9c2 cells. Vascular Pharmacology, 2008, 49, 166-172.	1.0	42
58	Modulation of Cardiac and Hepatic Cytochrome P450 Enzymes During Heart Failure. Current Drug Metabolism, 2008, 9, 122-128.	0.7	68
59	Modulation of Cytochrome P450 Gene Expression and Arachidonic Acid Metabolism during Isoproterenol-Induced Cardiac Hypertrophy in Rats. Drug Metabolism and Disposition, 2008, 36, 2277-2286.	1.7	94
60	H9c2 cell line is a valuable in vitro model to study the drug metabolizing enzymes in the heart. Journal of Pharmacological and Toxicological Methods, 2007, 56, 317-322.	0.3	91