Hengli Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6873226/publications.pdf Version: 2024-02-01

HENCH TANC

#	Article	IF	CITATIONS
1	iPS Cell Differentiation into Brain Microvascular Endothelial Cells. Methods in Molecular Biology, 2022, 2429, 201-213.	0.9	1
2	Intrinsic antiviral immunity of barrier cells revealed by an iPSC-derived blood-brain barrier cellular model. Cell Reports, 2022, 39, 110885.	6.4	8
3	An Integrated Systems Biology Approach Identifies the Proteasome as A Critical Host Machinery for ZIKV and DENV Replication. Genomics, Proteomics and Bioinformatics, 2021, 19, 108-122.	6.9	7
4	Biological activity-based modeling identifies antiviral leads against SARS-CoV-2. Nature Biotechnology, 2021, 39, 747-753.	17.5	38
5	Application of niclosamide and analogs as small molecule inhibitors of Zika virus and SARS-CoV-2 infection. Bioorganic and Medicinal Chemistry Letters, 2021, 40, 127906.	2.2	15
6	A CRISPR Activation Screen Identifies an Atypical Rho GTPase That Enhances Zika Viral Entry. Viruses, 2021, 13, 2113.	3.3	10
7	Coordination of Zika Virus Infection and Viroplasm Organization by Microtubules and Microtubule-Organizing Centers. Cells, 2021, 10, 3335.	4.1	5
8	Design, synthesis and discovery of andrographolide derivatives against Zika virus infection. European Journal of Medicinal Chemistry, 2020, 187, 111925.	5.5	31
9	Zika Says No Dice to Dicer. Cell Stem Cell, 2020, 27, 503-504.	11.1	1
10	Inhibition of zika virus infection by fused tricyclic derivatives of 1,2,4,5-tetrahydroimidazo[1,5-a]quinolin-3(3aH)-one. Bioorganic Chemistry, 2020, 104, 104205.	4.1	9
11	Zika Virus-Induced Neuronal Apoptosis via Increased Mitochondrial Fragmentation. Frontiers in Microbiology, 2020, 11, 598203.	3.5	27
12	Castanospermine reduces Zika virus infection-associated seizure by inhibiting both the viral load and inflammation in mouse models. Antiviral Research, 2020, 183, 104935.	4.1	4
13	Zika Virus Infection Induces DNA Damage Response in Human Neural Progenitors That Enhances Viral Replication. Journal of Virology, 2019, 93, .	3.4	45
14	High-Throughput Zika Viral Titer Assay for Rapid Screening of Antiviral Drugs. Assay and Drug Development Technologies, 2019, 17, 128-139.	1.2	8
15	Multiplexed Biomarker Panels Discriminate Zika and Dengue Virus Infection in Humans. Molecular and Cellular Proteomics, 2018, 17, 349-356.	3.8	19
16	An hPSC-Derived Tissue-Resident Macrophage Model Reveals Differential Responses of Macrophages to ZIKV and DENV Infection. Stem Cell Reports, 2018, 11, 348-362.	4.8	32
17	Emetine inhibits Zika and Ebola virus infections through two molecular mechanisms: inhibiting viral replication and decreasing viral entry. Cell Discovery, 2018, 4, 31.	6.7	128
18	Zika-Virus-Encoded NS2A Disrupts Mammalian Cortical Neurogenesis by Degrading Adherens Junction Proteins. Cell Stem Cell, 2017, 21, 349-358.e6.	11.1	163

Hengli Tang

#	Article	IF	CITATIONS
19	Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 2017, 20, 1209-1212.	14.8	85
20	Identification of a common Ara h 3 epitope recognized by both the capture and the detection monoclonal antibodies in an ELISA detection kit. PLoS ONE, 2017, 12, e0182935.	2.5	8
21	Advances in Zika Virus Research: Stem Cell Models, Challenges, and Opportunities. Cell Stem Cell, 2016, 19, 690-702.	11.1	103
22	Zika Virus Infects Human Cortical Neural Progenitors and Attenuates Their Growth. Cell Stem Cell, 2016, 18, 587-590.	11.1	1,125
23	Zika virus and neural developmental defects: building a case for a cause. Science China Life Sciences, 2016, 59, 536-538.	4.9	3
24	Brain-Region-Specific Organoids Using Mini-bioreactors for Modeling ZIKV Exposure. Cell, 2016, 165, 1238-1254.	28.9	1,680
25	Modeling Dengue Virus-Hepatic Cell Interactions Using Human Pluripotent Stem Cell-Derived Hepatocyte-like Cells. Stem Cell Reports, 2016, 7, 341-354.	4.8	27
26	Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nature Medicine, 2016, 22, 1101-1107.	30.7	581
27	Molecular signatures associated with ZIKV exposure in human cortical neural progenitors. Nucleic Acids Research, 2016, 44, 8610-8620.	14.5	155
28	Hepatitis C Virus-Induced Degradation of Cell Death-Inducing DFFA-Like Effector B Leads to Hepatic Lipid Dysregulation. Journal of Virology, 2016, 90, 4174-4185.	3.4	4
29	The missing pieces of the HCV entry puzzle. Future Virology, 2015, 10, 415-428.	1.8	6
30	Cell Death-Inducing DFFA-Like Effector b Is Required for Hepatitis C Virus Entry into Hepatocytes. Journal of Virology, 2014, 88, 8433-8444.	3.4	34
31	Suppression of the DHX9 Helicase Induces Premature Senescence in Human Diploid Fibroblasts in a p53-dependent Manner. Journal of Biological Chemistry, 2014, 289, 22798-22814.	3.4	37
32	The interaction between claudin-1 and dengue viral prM/M protein for its entry. Virology, 2013, 446, 303-313.	2.4	49
33	Productive Hepatitis C Virus Infection of Stem Cell-Derived Hepatocytes Reveals a Critical Transition to Viral Permissiveness during Differentiation. PLoS Pathogens, 2012, 8, e1002617.	4.7	159
34	A Conserved Tandem Cyclophilin-Binding Site in Hepatitis C Virus Nonstructural Protein 5A Regulates Alisporivir Susceptibility. Journal of Virology, 2012, 86, 4811-4822.	3.4	36
35	Suppression of Viral RNA Binding and the Assembly of Infectious Hepatitis C Virus Particles <i>In Vitro</i> by Cyclophilin Inhibitors. Journal of Virology, 2012, 86, 12616-12624.	3.4	31
36	Hepatitis C Virus Attachment Mediated by Apolipoprotein E Binding to Cell Surface Heparan Sulfate. Journal of Virology, 2012, 86, 7256-7267.	3.4	141

Hengli Tang

#	Article	IF	CITATIONS
37	Targeting host cofactors to inhibit viral infection. Frontiers in Biology, 2012, 7, 445-458.	0.7	Ο
38	Cyclophilin Inhibitors as a Novel HCV Therapy. Viruses, 2010, 2, 1621-1634.	3.3	20
39	A Major Determinant of Cyclophilin Dependence and Cyclosporine Susceptibility of Hepatitis C Virus Identified by a Genetic Approach. PLoS Pathogens, 2010, 6, e1001118.	4.7	89
40	Simultaneous Reduction and Digestion of Proteins with Disulfide Bonds for Hydrogen/Deuterium Exchange Monitored by Mass Spectrometry. Analytical Chemistry, 2010, 82, 1450-1454.	6.5	51
41	Critical Role of Cyclophilin A and Its Prolyl-Peptidyl Isomerase Activity in the Structure and Function of the Hepatitis C Virus Replication Complex. Journal of Virology, 2009, 83, 6554-6565.	3.4	149
42	The Isomerase Active Site of Cyclophilin A Is Critical for Hepatitis C Virus Replication. Journal of Biological Chemistry, 2009, 284, 16998-17005.	3.4	174
43	Mutations in the hepatitis C virus polymerase that increase RNA binding can confer resistance to cyclosporine A. Hepatology, 2009, 50, 25-33.	7.3	24
44	Cellular and molecular biology of HCV infection and hepatitis. Clinical Science, 2009, 117, 49-65.	4.3	106
45	Cyclophilin A Is an Essential Cofactor for Hepatitis C Virus Infection and the Principal Mediator of Cyclosporine Resistance In Vitro. Journal of Virology, 2008, 82, 5269-5278.	3.4	217
46	Characterization of Hepatitis C Virus Subgenomic Replicon Resistance to Cyclosporine In Vitro. Journal of Virology, 2007, 81, 5829-5840.	3.4	88
47	Molecular determinants of nucleolar translocation of RNA helicase A. Experimental Cell Research, 2007, 313, 3743-3754.	2.6	6
48	Effect of Cell Growth on Hepatitis C Virus (HCV) Replication and a Mechanism of Cell Confluence-Based Inhibition of HCV RNA and Protein Expression. Journal of Virology, 2006, 80, 1181-1190.	3.4	51
49	Identification of Cellular Cofactors for Human Immunodeficiency Virus Replication via a Ribozyme-Based Genomics Approach. Journal of Virology, 2004, 78, 12829-12837.	3.4	53
50	Specific Interaction between RNA Helicase A and Tap, Two Cellular Proteins That Bind to the Constitutive Transport Element of Type D Retrovirus. Journal of Biological Chemistry, 2000, 275, 32694-32700.	3.4	39
51	The Carboxyl Terminus of RNA Helicase A Contains a Bidirectional Nuclear Transport Domain. Molecular and Cellular Biology, 1999, 19, 3540-3550.	2.3	60