Daiki Asakawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6872939/publications.pdf

Version: 2024-02-01

289141 257357 1,867 87 24 40 h-index citations g-index papers 88 88 88 1090 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Hot Hydrogen Atom Irradiation of Protonated/Deprotonated Peptide in an Ion Trap Facilitates Fragmentation through Heated Radical Formation. Journal of the American Chemical Society, 2022, 144, 3020-3028.	6.6	3
2	Fragmentation efficiency of phenethylamines in electrospray ionization source estimated by theoretical chemistry calculation. Journal of Mass Spectrometry, 2022, 57, e4802.	0.7	4
3	Experimental and Theoretical Investigation of MALDI In-Source Decay of Peptides with a Reducing Matrix: What Is the Initial Fragmentation Step?. Journal of the American Society for Mass Spectrometry, 2022, 33, 1011-1021.	1.2	4
4	Cooperative dissociation of peptide backbones and sideâ€chains during matrixâ€assisted laser desorption/ionization inâ€source decay mediated by hydrogen abstraction. Journal of Mass Spectrometry, 2021, 56, e4530.	0.7	2
5	Fragmentation study of tryptophan-derived metabolites induced by electrospray ionization mass spectrometry for highly sensitive analysis. Analyst, The, 2021, 146, 2292-2300.	1.7	9
6	Rapid chiral discrimination of oncometabolite dl â€2â€hydroxyglutaric acid using derivatization and field asymmetric waveform ion mobility spectrometry/mass spectrometry. Journal of Separation Science, 2021, 44, 3489-3496.	1.3	7
7	Study of Substituted Phenethylamine Fragmentation Induced by Electrospray Ionization Mass Spectrometry and Its Application for Highly Sensitive Analysis of Neurotransmitters in Biological Samples. Journal of the American Society for Mass Spectrometry, 2021, 32, 2144-2152.	1.2	11
8	Ultraviolet-Laser-Induced Electron Transfer from Peptides to an Oxidizing Matrix: Study of the First Step of MALDI In-Source Decay Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1918-1926.	1.2	5
9	Gas-Phase Peptide Fragmentation Induced by Hydrogen Attachment, from Principle to Sequencing of Amide Nitrogen-Methylated Peptides. Analytical Chemistry, 2020, 92, 15773-15780.	3.2	4
10	In-Source Fragmentation of Phenethylamines by Electrospray Ionization Mass Spectrometry: Toward Highly Sensitive Quantitative Analysis of Monoamine Neurotransmitters. Analytical Chemistry, 2020, 92, 12033-12039.	3.2	13
11	Characterization of Polyethers Using Tandem Mass Spectrometry with Hydrogen Abstraction Dissociation and Thermal Activation. Journal of the American Society for Mass Spectrometry, 2020, 31, 450-457.	1.2	3
12	Mass Spectrometric Characterization of the Partial Oxidation Process of a Gasoline Surrogate Induced by a Dielectric Barrier Discharge. Journal of Physical Chemistry A, 2020, 124, 2019-2028.	1.1	4
13	Identifying Double Bond Positions in Phospholipids Using Liquid Chromatography-Triple Quadrupole Tandem Mass Spectrometry Based on Oxygen Attachment Dissociation. Mass Spectrometry, 2020, 8, S0080-S0080.	0.2	2
14	Investigation of the Knocking Intensity Mitigation Mechanism by Dielectric Barrier Discharge. International Journal of Automotive Engineering, 2020, 11 , 75 -82.	0.3	1
15	Sequencing of Sulfopeptides Using Negative-Ion Tandem Mass Spectrometry with Hydrogen Attachment/Abstraction Dissociation. Analytical Chemistry, 2019, 91, 10549-10556.	3.2	13
16	General Mechanism of C _α –C Peptide Backbone Bond Cleavage in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mediated by Hydrogen Abstraction. Journal of the American Society for Mass Spectrometry, 2019, 30, 1491-1502.	1.2	8
17	Hydrogen atom attachment to histidine and tryptophan containing peptides in the gas phase. Physical Chemistry Chemical Physics, 2019, 21, 11633-11641.	1.3	10
18	Hydrogen attachment dissociation of peptides containing disulfide bonds. Physical Chemistry Chemical Physics, 2019, 21, 26049-26057.	1.3	8

#	Article	IF	CITATIONS
19	Flame Propagation Enhancement by Dielectric Barrier Discharge-Generated Intermediate Species. Combustion Science and Technology, 2019, 191, 1972-1989.	1.2	6
20	De Novo Sequencing of Tryptic Phosphopeptides Using Matrix-Assisted Laser Desorption/Ionization Based Tandem Mass Spectrometry with Hydrogen Atom Attachment. Analytical Chemistry, 2018, 90, 2701-2707.	3.2	14
21	Fundamental study of hydrogen-attachment-induced peptide fragmentation occurring in the gas phase and during the matrix-assisted laser desorption/ionization process. Physical Chemistry Chemical Physics, 2018, 20, 13057-13067.	1.3	13
22	Real-time monitoring for reforming processes of liquid hydrocarbon fuel–air pre-mixtures by non-thermal plasmas using ion attachment mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 1082-1090.	1.3	8
23	Influence of the metals and ligands in dinuclear complexes on phosphopeptide sequencing by electron-transfer dissociation tandem mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 26597-26607.	1.3	3
24	Structural Analysis of Phospholipid Using Hydrogen Abstraction Dissociation and Oxygen Attachment Dissociation in Tandem Mass Spectrometry. Analytical Chemistry, 2018, 90, 7230-7238.	3.2	35
25	Direct MALDIâ€MS analysis of the disulfide bonds in peptide using thiosalicylic acid as a reactive matrix. Journal of Mass Spectrometry, 2017, 52, 127-131.	0.7	3
26	Gas-Phase Stability of Negatively Charged Organophosphate Metabolites Produced by Electrospray Ionization and Matrix-Assisted Laser Desorption/Ionization. Journal of the American Society for Mass Spectrometry, 2017, 28, 2561-2568.	1.2	10
27	Investigation of Electron Transfer Dissociation Processes Using Metal–Peptide Complexes as the Probe. Journal of the Mass Spectrometry Society of Japan, 2017, 65, 264-267.	0.0	0
28	Estimation of peptide N–C _α bond cleavage efficiency during MALDIâ€ISD using a cyclic peptide. Journal of Mass Spectrometry, 2016, 51, 323-327.	0.7	9
29	Principles of hydrogen radical mediated peptide/protein fragmentation during matrixâ€assisted laser desorption/ionization mass spectrometry. Mass Spectrometry Reviews, 2016, 35, 535-556.	2.8	33
30	High-Confidence Sequencing of Phosphopeptides by Electron Transfer Dissociation Mass Spectrometry Using Dinuclear Zinc(II) Complex. Analytical Chemistry, 2016, 88, 12393-12402.	3.2	11
31	Difference of Electron Capture and Transfer Dissociation Mass Spectrometry on Ni ²⁺ -, Cu ²⁺ -, and Zn ²⁺ -Polyhistidine Complexes in the Absence of Remote Protons. Journal of the American Society for Mass Spectrometry, 2016, 27, 1165-1175.	1.2	9
32	Developments in Matrix Molecules for MALDI-ISD Mass Spectrometry. Journal of the Mass Spectrometry Society of Japan, 2016, 64, 187-190.	0.0	0
33	N–C _α Bond Cleavage of Zinc-Polyhistidine Complexes in Electron Transfer Dissociation Mediated by Zwitterion Formation: Experimental Evidence and Theoretical Analysis of the Utah–Washington Model. Journal of Physical Chemistry B, 2016, 120, 891-901.	1.2	10
34	Surfactant protein D suppresses lung cancer progression by downregulation of epidermal growth factor signaling. Oncogene, 2015, 34, 838-845.	2.6	55
35	Coordination of alkali metal ions to model branched hexasaccharides dictates fragment yield in MALDI inâ€source decay with hydrogen abstraction using 5â€nitrosalicylic acid as the matrix. Journal of Mass Spectrometry, 2014, 49, 1059-1062.	0.7	4
36	Electron Transfer Dissociation Mass Spectrometry of Peptides Containing Free Cysteine Using Group XII Metals as a Charge Carrier. Journal of Physical Chemistry B, 2014, 118, 12318-12325.	1.2	14

#	Article	IF	CITATIONS
37	Influence of Metal–Peptide Complexation on Fragmentation and Inter-Fragment Hydrogen Migration in Electron Transfer Dissociation. Journal of the American Society for Mass Spectrometry, 2014, 25, 1029-1039.	1.2	13
38	Influences of Proline and Cysteine Residues on Fragment Yield in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 1040-1048.	1.2	17
39	New Approach for Pseudo-MS ³ Analysis of Peptides and Proteins via MALDI In-Source Decay Using Radical Recombination with 1,5-Diaminonaphthalene. Analytical Chemistry, 2014, 86, 2451-2457.	3.2	24
40	Discrimination of Isobaric Leu/Ile Residues by MALDI In-Source Decay Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2013, 24, 297-300.	1,2	33
41	Influence of initial velocity of analytes on in-source decay products in MALDI mass spectrometry using salicylic acid derivative matrices. International Journal of Mass Spectrometry, 2013, 337, 29-33.	0.7	17
42	Ultraviolet Laser Induced Hydrogen Transfer Reaction: Study of the First Step of MALDI In-Source Decay Mass Spectrometry. Journal of Physical Chemistry B, 2013, 117, 2321-2327.	1.2	36
43	Selected Protein Monitoring in Histological Sections by Targeted MALDI-FTICR In-Source Decay Imaging. Analytical Chemistry, 2013, 85, 2117-2126.	3.2	38
44	In-Source Decay during Matrix-Assisted Laser Desorption/Ionization Combined with the Collisional Process in an FTICR Mass Spectrometer. Analytical Chemistry, 2013, 85, 7809-7817.	3.2	26
45	Peptide backbone fragmentation initiated by sideâ€chain loss at cysteine residue in matrixâ€assisted laser desorption/ionization inâ€source decay mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 352-360.	0.7	21
46	Estimation of useful yields for electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS). Surface and Interface Analysis, 2013, 45, 968-972.	0.8	11
47	Peptide backbone fragmentation initiated by side-chain loss at cysteine residue in matrix-assisted laser desorption/ionization in-source decay mass spectrometry. Journal of Mass Spectrometry, 2013, 48, i-i.	0.7	1
48	5-Nitrosalicylic Acid as a Novel Matrix for In-Source Decay in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Mass Spectrometry, 2013, 2, A0019-A0019.	0.2	7
49	Identification and Relative-Quantification of Glycans by Matrix-Assisted Laser Desorption/Ionization In-Source Decay with Hydrogen Abstraction. Analytical Chemistry, 2012, 84, 7463-7468.	3.2	18
50	Fragmentation Processes of Hydrogen-Deficient Peptide Radicals in Matrix-Assisted Laser Desorption/Ionization In-Source Decay Mass Spectrometry. Journal of Physical Chemistry B, 2012, 116, 4016-4023.	1.2	24
51	MALDI In-Source Decay, from Sequencing to Imaging. Topics in Current Chemistry, 2012, 331, 117-141.	4.0	28
52	Matrix Effect on In-Source Decay Products of Peptides in Matrix-Assisted Laser Desorption/Ionization. Mass Spectrometry, 2012, 1, A0002-A0002.	0.2	6
53	Surface characterization and depth profiling of biological molecules by electrospray droplet impact/SIMS. Surface and Interface Analysis, 2012, 44, 227-231.	0.8	8
54	Mass spectrometric characterization of phosphorylated peptides using MALDI inâ€source decay via redox reactions. Journal of Mass Spectrometry, 2012, 47, 180-187.	0.7	19

#	Article	IF	Citations
55	Influence of Amino Acid Composition and Phosphorylation on the Ion Yields of Peptides in MALDI-MS. Journal of the American Society for Mass Spectrometry, 2012, 23, 108-115.	1.2	11
56	Desorption/Ionization Mechanism in Electrospray Droplet Impact. Journal of the Mass Spectrometry Society of Japan, 2011, 59, 95-105.	0.0	0
57	Bond Cleavage of the Peptide Backbone in MALDI In-Source Decay Using Salicylic Acid Derivative Matrices. Journal of the American Society for Mass Spectrometry, 2011, 22, 1224-33.	1.2	49
58	Study of the desorption/ionization mechanism in electrospray droplet impact secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 655-660.	0.7	21
59	Specific cleavage at peptide backbone C _α â€"C and COâ€"N bonds during matrixâ€assisted laser desorption/ionization inâ€source decay mass spectrometry with 5â€nitrosalicylic acid as the matrix. Rapid Communications in Mass Spectrometry, 2011, 25, 2379-2383.	0.7	25
60	Detection of peptides in high concentration of salts by electrospray droplet impact/secondary ion mass spectrometry. Surface and Interface Analysis, 2011, 43, 1341-1345.	0.8	3
61	Direct analysis of lipids in mouse brain using electrospray droplet impact/SIMS. Journal of Mass Spectrometry, 2010, 45, 437-443.	0.7	11
62	Direct profiling of saccharides, organic acids and anthocyanins in fruits using electrospray droplet impact/secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2010, 24, 2431-2438.	0.7	11
63	XPS depth profiling of polystyrene etched by electrospray droplet impact. Surface and Interface Analysis, 2010, 42, 658-661.	0.8	31
64	X-ray photoelectron spectroscopy analysis of organic materials etched by charged water droplet impact. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 743-747.	0.9	23
65	Study on the redox reactions for organic dyes and <i>S</i> â€nitrosylated peptide in electrospray droplet impact. Journal of Mass Spectrometry, 2009, 44, 461-465.	0.7	15
66	The analysis of industrial synthetic polymers by electrospray droplet impact/secondary ion mass spectrometry. Journal of Mass Spectrometry, 2009, 44, 945-951.	0.7	21
67	Physical properties of the probe electrospray ionization (PESI) needle applied to the biological samples. Journal of Mass Spectrometry, 2009, 44, 978-985.	0.7	59
68	Shallow surface etching of organic and inorganic compounds by electrospray droplet impact. Applied Surface Science, 2009, 255, 8947-8952.	3.1	30
69	Surface characterization of polymethylmetacrylate bombarded by charged water droplets. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 748-753.	0.9	22
70	Direct and Real-Time Surface Analysis and Imaging of Biological Samples by Probe Electrospray. Journal of Surface Analysis (Online), 2009, 15, 279-282.	0.1	8
71	Depth Profiling of Polystyrene Using Charged Water Droplet Impact. Journal of Surface Analysis (Online), 2009, 15, 283-286.	0.1	6
72	Analysis of Insoluble Organic Pigments by Desorption/Ionization Mass Spectrometry. Journal of the Mass Spectrometry Society of Japan, 2009, 57, 15-22.	0.0	2

#	Article	IF	CITATIONS
7 3	Determination of Dynamic Ranges for Quantitative Analysis Using Electrospray Droplet Impact Ionization and Matrix-Assisted Laser Desorption Ionization. Journal of the Mass Spectrometry Society of Japan, 2009, 57, 81-87.	0.0	10
74	ARE PREBIOTIC MOLECULES PRESERVED IN THE SUPERSONIC COLLISION OF ICE PARTICLES?., 2009, , 169-179.		0
75	Application of probe electrospray to direct ambient analysis of biological samples. Rapid Communications in Mass Spectrometry, 2008, 22, 2366-2374.	0.7	66
76	A comparison of EDI with solventâ€free MALDI and LDI for the analysis of organic pigments. Journal of Mass Spectrometry, 2008, 43, 436-446.	0.7	32
77	Negativeâ€mode MALDI mass spectrometry for the analysis of pigments using tetrathiafulvalene as a matrix. Journal of Mass Spectrometry, 2008, 43, 1494-1501.	0.7	11
78	Energy dependence of projectiles on ion formation in electrospray droplet impact SIMS. Applied Surface Science, 2008, 255, 1217-1222.	3.1	25
79	Gas-phase ion/molecule reactions in C2F4. International Journal of Mass Spectrometry, 2008, 272, 22-28.	0.7	5
80	Characteristics of Probe Electrospray Generated from a Solid Needle. Journal of Physical Chemistry B, 2008, 112, 11164-11170.	1.2	79
81	Study on ion formation in electrospray droplet impact secondary ion mass spectrometry. Rapid Communications in Mass Spectrometry, 2007, 21, 1579-1586.	0.7	41
82	Development of probe electrospray using a solid needle. Rapid Communications in Mass Spectrometry, 2007, 21, 3139-3144.	0.7	282
83	Matrixâ€assisted laser desorption/ionization mass spectrometry using a visible laser. Rapid Communications in Mass Spectrometry, 2007, 21, 4129-4134.	0.7	14
84	Electrospray droplet impact/secondary ion mass spectrometry: cluster ion formation. Rapid Communications in Mass Spectrometry, 2006, 20, 2596-2602.	0.7	48
85	Electrosprayed droplet impact/secondary ion mass spectrometry. European Physical Journal D, 2006, 38, 225-229.	0.6	92
86	Fundamental aspects of electrospray droplet impact/SIMS. Journal of Mass Spectrometry, 2006, 41, 894-902.	0.7	109
87	Positive Ion/Molecule Reactions in Tetrafluoroethylene. Journal of the Mass Spectrometry Society of Japan, 2005, 53, 315-317.	0.0	0