
Antonio Lopes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6872907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An urban energy balance-guided machine learning approach for synthetic nocturnal surface Urban Heat Island prediction: A heatwave event in Naples. Science of the Total Environment, 2022, 805, 150130.	3.9	23
2	Assessing urban heat island effects through local weather types in Lisbon's Metropolitan Area using big data from the Copernicus service. Urban Climate, 2022, 43, 101168.	2.4	10
3	Urban heat island data by local weather types in Lisbon metropolitan area based on Copernicus climate variables dataset for European cities. Data in Brief, 2022, 42, 108292.	0.5	3
4	Human health outcomes at the neighbourhood scale implications: Elderly's heat-related cardiorespiratory mortality and its influencing factors. Science of the Total Environment, 2021, 760, 144036.	3.9	9
5	Heatwaves and Summer Urban Heat Islands: A Daily Cycle Approach to Unveil the Urban Thermal Signal Changes in Lisbon, Portugal. Atmosphere, 2021, 12, 292.	1.0	28
6	An urban climate-based empirical model to predict present and future patterns of the Urban Thermal Signal. Science of the Total Environment, 2021, 790, 147710.	3.9	8
7	Assessment of Climatic Guidelines and Urban Planning in North-Eastern Coast of Brazil. , 2021, , 199-220.		0
8	A Avaliação de Riscos Climáticos nos Planos Municipais de Emergência em Portugal: métodos e experiência. , 2021, , 333-352.		0
9	Valoração monetária da arborização urbana baseada na magnitude da copa em Piracicaba/Brasil. Revista LABVERDE, 2021, 11, 150-170.	0.2	0
10	Sea Breeze Front and Outdoor Thermal Comfort during Summer in Northeastern Brazil. Atmosphere, 2020, 11, 1013.	1.0	9
11	Which heatwave measure has higher predictive power to prevent health risks related to heat: EHF or GATO IV? – Evidence from modelling Lisbon mortality data from 1980 to 2016. Weather and Climate Extremes, 2020, 30, 100287.	1.6	3
12	Local climate zones classification method from Copernicus land monitoring service datasets: An ArcGIS-based toolbox. MethodsX, 2020, 7, 101150.	0.7	6
13	Air Pollution and Emergency Hospital Admissions—Evidences from Lisbon Metropolitan Area, Portugal. Applied Sciences (Switzerland), 2020, 10, 7997.	1.3	6
14	Local climate zones datasets from five Southern European cities: Copernicus based classification maps of Athens, Barcelona, Lisbon, Marseille and Naples. Data in Brief, 2020, 31, 105802.	0.5	6
15	Local Weather Types by Thermal Periods: Deepening the Knowledge about Lisbon's Urban Climate. Atmosphere, 2020, 11, 840.	1.0	9
16	Local climate zones in five southern European cities: An improved GIS-based classification method based on Copernicus data. Urban Climate, 2020, 33, 100631.	2.4	43
17	Heavy Rainfall Events and Mass Movements in the Funchal Area (Madeira, Portugal): Spatial Analysis and Susceptibility Assessment. Atmosphere, 2020, 11, 104.	1.0	5
18	The Role of Climate and Topography in Shaping the Diversity of Plant Communities in Cabo Verde Islands. Diversity, 2020, 12, 80.	0.7	19

ANTONIO LOPES

#	Article	IF	CITATIONS
19	Surface Radiation Balance of Urban Materials and Their Impact on Air Temperature of an Urban Canyon in Lisbon, Portugal. Applied Sciences (Switzerland), 2020, 10, 2193.	1.3	9
20	Tourists' Perceptions on Climate Change in Lisbon Region. Atmosphere, 2020, 11, 297.	1.0	10
21	Sea breeze front identification on the northeastern coast of Brazil and its implications for meteorological conditions in the Sergipe region. Theoretical and Applied Climatology, 2019, 137, 2151-2165.	1.3	15
22	Evaluating the Cooling Potential of Urban Green Spaces to Tackle Urban Climate Change in Lisbon. Sustainability, 2019, 11, 2480.	1.6	47
23	Confronting potential future augmentations of the physiologically equivalent temperature through public space design: The case of Rossio, Lisbon. Sustainable Cities and Society, 2018, 37, 7-25.	5.1	30
24	Uso dos modelos CAL3QHC e I-Tree Canopy na avaliação da qualidade do ar em Aracaju: estimativas das concentrações de PM10 nas vias de tráfego intenso de automóveis. GEOUSP: Espaço E Tempo, 2018, 22, 707-728.	0.1	2
25	Morphological Indices as Urban Planning Tools in Northeastern Brazil. Sustainability, 2018, 10, 4358.	1.6	4
26	An Original Approach Combining CFD, Linearized Models, and Deformation of Trees for Urban Wind Power Assessment. Sustainability, 2018, 10, 1915.	1.6	2
27	An integrated approach for wind fields assessment in coastal areas, based on bioindicators, CFD modeling, and observations. Theoretical and Applied Climatology, 2017, 128, 301-310.	1.3	3
28	The Urban Heat Island Effect and the Role of Vegetation to Address the Negative Impacts of Local Climate Changes in a Small Brazilian City. Atmosphere, 2017, 8, 18.	1.0	30
29	Urban Heat Island and Park Cool Island Intensities in the Coastal City of Aracaju, North-Eastern Brazil. Sustainability, 2017, 9, 1379.	1.6	40
30	MORFOLOGIA URBANA E CORREDORES DE VENTILAÇÃO COMO SUBSÃÐIO À RESILIÊNCIA URBANA. Revista LABVERDE, 2017, 8, 12.	0.2	2
31	REDE CLIMATOLÓGICA DE MESOESCALA APLICADA AO ESTUDO DA ILHA DE CALOR URBANO: O CASO DE ARACAJU-SE. Caminhos De Geografia, 2017, 18, 203-216.	0.1	5
32	Lisbon heat island statistical study (2004-2012). Finisterra, 2015, 49, .	0.3	7
33	Tourism and climate in Lisbon. An assessment based on weather types. Finisterra, 2015, 49, .	0.3	2
34	Urban bioclimate and comfort assessment in the African city of Praia (Cape Verde). Finisterra, 2015, 49,	0.3	1
35	Lisbon Urban Heat Island Updated: New Highlights about the Relationships between Thermal Patterns and Wind Regimes. Advances in Meteorology, 2013, 2013, 1-11.	0.6	41
36	The 20 February 2010 Madeira flash-floods: synoptic analysis and extreme rainfall assessment. Natural Hazards and Earth System Sciences, 2012, 12, 715-730.	1.5	70

ANTONIO LOPES

#	Article	IF	CITATIONS
37	A utilização de balões cativos para o estudo microclimático do bairro de Telheiras. Finisterra, 2012, 37,	0.3	1
38	Drenagem e acumulação de ar frio em noites de arrefecimento radiativo. Um exemplo no vale de Barcarena (Oeiras). Finisterra, 2012, 30, .	0.3	4
39	Regional thermal patterns in Portugal using satellite images (NOAA AVHRR). Finisterra, 2012, 30, .	0.3	0
40	The influence of the summer sea breeze on thermal comfort in Funchal (Madeira). A contribution to	0.5	41
41	Urban boundary layer wind speed reduction in summer due to urban growth and environmental consequences in Lisbon. Environmental Modelling and Software, 2011, 26, 241-243.	1.9	29
42	Application of climatic guidelines to urban planning. Landscape and Urban Planning, 2009, 90, 56-65.	3.4	135
43	Wind Risk Assessment in Urban Environments: The Case of Falling Trees During Windstorm Events in Lisbon. , 2009, , 55-74.		17
44	O sobreaquecimento das cidades. Causas e medidas para a mitigação da ilha de calor de Lisboa. Territorium: Revista Portuguesa De Riscos, Prevenção E Segurança, 2008, , 39-52.	0.1	6
45	The Urban Climatic Map. , 0, , .		24