
Richard J Dewhurst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6872897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of ammonia concentration on rumen microbial protein production <i>in vitro</i> . British Journal of Nutrition, 2022, 127, 847-849.	1.2	9
2	Identifying Hub Nodes and Sub-networks from Cattle Rumen Microbiome Multilayer Networks. Communications in Computer and Information Science, 2022, , 165-175.	0.4	1
3	Bovine host genome acts on rumen microbiome function linked to methane emissions. Communications Biology, 2022, 5, 350.	2.0	25
4	Measurement Duration but Not Distance, Angle, and Neighbour-Proximity Affects Precision in Enteric Methane Emissions when Using the Laser Methane Detector Technique in Lactating Dairy Cows. Animals, 2022, 12, 1295.	1.0	2
5	A heat diffusion multilayer network approach for the identification of functional biomarkers in rumen methane emissions. Methods, 2021, 192, 57-66.	1.9	6
6	Breeding strategies for improving smallholder dairy cattle productivity in Sub‣aharan Africa. Journal of Animal Breeding and Genetics, 2021, 138, 668-687.	0.8	5
7	Estimation of Nitrogen Use Efficiency for Ryegrass-Fed Dairy Cows: Model Development Using Diet- and Animal-Based Proxy Measures. Dairy, 2021, 2, 435-451.	0.7	3
8	Comparison of HPLC and NMR for quantification of the main volatile fatty acids in rumen digesta. Scientific Reports, 2021, 11, 24337.	1.6	6
9	Improving the Inference of Co-Occurrence Networks in the Bovine Rumen Microbiome. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17, 858-867.	1.9	1
10	Modelling alternative management scenarios of economic and environmental sustainability of beef finishing systems. Journal of Cleaner Production, 2020, 253, 119888.	4.6	18
11	A bio-economic model for cost analysis of alternative management strategies in beef finishing systems. Agricultural Systems, 2020, 180, 102713.	3.2	7
12	A Knowledge-Driven Network-Based Analytical Framework for the Identification of Rumen Metabolites. IEEE Transactions on Nanobioscience, 2020, 19, 518-526.	2.2	4
13	Identification of Microbial Genetic Capacities and Potential Mechanisms Within the Rumen Microbiome Explaining Differences in Beef Cattle Feed Efficiency. Frontiers in Microbiology, 2020, 11, 1229.	1.5	28
14	Identification of Complex Rumen Microbiome Interaction Within Diverse Functional Niches as Mechanisms Affecting the Variation of Methane Emissions in Bovine. Frontiers in Microbiology, 2020, 11, 659.	1.5	51
15	Links between the rumen microbiota, methane emissions and feed efficiency of finishing steers offered dietary lipid and nitrate supplementation. PLoS ONE, 2020, 15, e0231759.	1.1	22
16	Unravelling the Role of Rumen Microbial Communities, Genes, and Activities on Milk Fatty Acid Profile Using a Combination of Omics Approaches. Frontiers in Microbiology, 2020, 11, 590441.	1.5	11
17	Identification of Rumen Microbial Genes Involved in Pathways Linked to Appetite, Growth, and Feed Conversion Efficiency in Cattle. Frontiers in Genetics, 2019, 10, 701.	1.1	43
18	A Phylogeny-aware Feature Ranking for Classification of Cattle Rumen Microbiome. , 2019, , .		0

2

#	Article	IF	CITATIONS
19	A knowledge driven mutual information-based analytical framework for the identification of rumen metabolites. , 2019, , .		1
20	Temporal stability of the rumen microbiota in beef cattle, and response to diet and supplements. Animal Microbiome, 2019, 1, 16.	1.5	29
21	Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nature Communications, 2018, 9, 870.	5.8	405
22	Fat accretion measurements strengthen the relationship between feed conversion efficiency and Nitrogen isotopic discrimination while rumen microbial genes contribute little. Scientific Reports, 2018, 8, 3854.	1.6	7
23	An Integrative Framework for Functional Analysis of Cattle Rumen Microbiomes. , 2018, , .		4
24	Evaluation of Microbial Communities Associated With the Liquid and Solid Phases of the Rumen of Cattle Offered a Diet of Perennial Ryegrass or White Clover. Frontiers in Microbiology, 2018, 9, 2389.	1.5	27
25	The effect of kale cultivar and sowing date on dry-matter intake, crop utilization, liveweight gain and body condition score gain of pregnant, nonlactating dry dairy cows in winter in New Zealand. Grass and Forage Science, 2018, 73, 979-985.	1.2	Ο
26	Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Frontiers in Microbiology, 2018, 9, 2161.	1.5	255
27	Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science, 2017, 100, 2433-2453.	1.4	115
28	Integrated metagenomic analysis of the rumen microbiome of cattle reveals key biological mechanisms associated with methane traits. Methods, 2017, 124, 108-119.	1.9	21
29	Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective. Animal, 2017, 11, 274-284.	1.3	80
30	Compositional mixed modeling of methane emissions and ruminal volatile fatty acids from individual cattle and multiple experiments1. Journal of Animal Science, 2017, 95, 2467-2480.	0.2	22
31	Microbial co-presence and mutual-exclusion networks in the Bovine rumen microbiome. , 2017, , .		3
32	The rumen microbiome as a reservoir of antimicrobial resistance and pathogenicity genes is directly affected by diet in beef cattle. Microbiome, 2017, 5, 159.	4.9	128
33	Identification, Comparison, and Validation of Robust Rumen Microbial Biomarkers for Methane Emissions Using Diverse Bos Taurus Breeds and Basal Diets. Frontiers in Microbiology, 2017, 8, 2642.	1.5	64
34	An Integrative Approach for the Functional Analysis of Metagenomic Studies. Lecture Notes in Computer Science, 2017, , 421-427.	1.0	5
35	Compositional mixed modeling of methane emissions and ruminal volatile fatty acids from individual cattle and multiple experiments. Journal of Animal Science, 2017, 95, 2467.	0.2	7
36	The effect of dietary water soluble carbohydrate to nitrogen ratio on nitrogen partitioning and isotopic fractionation of lactating goats offered a high-nitrogen diet. Animal, 2016, 10, 779-785.	1.3	7

#	Article	IF	CITATIONS
37	Bovine Host Genetic Variation Influences Rumen Microbial Methane Production with Best Selection Criterion for Low Methane Emitting and Efficiently Feed Converting Hosts Based on Metagenomic Gene Abundance. PLoS Genetics, 2016, 12, e1005846.	1.5	267
38	Analysis of rumen microbial community in cattle through the integration of metagenomic and network-based approaches. , 2016, , .		3
39	A network analysis of methane and feed conversion genes in the rumen microbial community. , 2016, , .		1
40	Effects of feed intake and genetics on tissue nitrogen-15 enrichment and feed conversion efficiency in sheep1. Journal of Animal Science, 2015, 93, 5849-5855.	0.2	6
41	Associative effects of ensiling mixtures of sweet sorghum and alfalfa on nutritive value, fermentation and methane characteristics. Animal Feed Science and Technology, 2015, 206, 29-38.	1.1	45
42	Effects of supplementing a mixed diet with echium (<i>Echium plantagineum</i>) oil on methanogenesis in a rumen simulation system. Journal of Animal and Feed Sciences, 2015, 24, 3-10.	0.4	1
43	Analysis of major fatty acids in milk produced from high-quality grazed pasture. New Zealand Journal of Agricultural Research, 2014, 57, 165-179.	0.9	8
44	Changes in the ratio of tetraether to diether lipids in cattle feces in response to altered dietary ratio of grass silage and concentrates1. Journal of Animal Science, 2014, 92, 4095-4098.	0.2	6
45	Short communication: Relationship between the efficiency of utilization of feed nitrogen and 15N enrichment in casein from lactating dairy cows. Journal of Dairy Science, 2014, 97, 7225-7229.	1.4	10
46	Plasma nitrogen isotopic fractionation and feed efficiency in growing beef heifers. British Journal of Nutrition, 2014, 111, 1705-1711.	1.2	24
47	Nitrogen partitioning, energy use efficiency and isotopic fractionation measurements from cows differing in genetic merit fed low-quality pasture in late lactation. Animal Production Science, 2014, 54, 1651.	0.6	19
48	Using archaeol to investigate the location of methanogens in the ruminant digestive tract. Livestock Science, 2014, 164, 39-45.	0.6	13
49	Chemical markers for rumen methanogens and methanogenesis. Animal, 2013, 7, 409-417.	1.3	17
50	Assessment of archaeol as a molecular proxy for methane production in cattle. Journal of Dairy Science, 2013, 96, 1211-1217.	1.4	28
51	Technical note: Comparison of biomarker and molecular biological methods for estimating methanogen abundance1. Journal of Animal Science, 2013, 91, 5724-5728.	0.2	14
52	The effects of dietary nitrogen to water-soluble carbohydrate ratio on isotopic fractionation and partitioning of nitrogen in non-lactating sheep. Animal, 2013, 7, 1274-1279.	1.3	16
53	Effects of protein sources on concentrations of hydrogen sulphide in the rumen headspace gas of dairy cows. Animal, 2013, 7, 75-81.	1.3	2
54	Editorial: Greenhouse Gases and Animal Agriculture Conference, Dublin, 2013. Animal, 2013, 7, 203-205.	1.3	1

#	Article	IF	CITATIONS
55	Technical note: Nitrogen isotopic fractionation can be used to predict nitrogen-use efficiency in dairy cows fed temperate pasture1. Journal of Animal Science, 2013, 91, 5785-5788.	0.2	25
56	Milk production from silage: comparison of grass, legume and maize silages and their mixtures. Agricultural and Food Science, 2013, 22, 57-69.	0.3	45
57	The effect of strategic supplementation with trans-10,cis-12 conjugated linoleic acid on the milk production, estrous cycle characteristics, and reproductive performance of lactating dairy cattle. Journal of Dairy Science, 2012, 95, 2442-2451.	1.4	18
58	Effect of supplementation with different fat sources on the mechanisms involved in reproductive performance in lactating dairy cattle. Theriogenology, 2012, 78, 12-27.	0.9	30
59	Effect of grass dry matter intake and fat supplementation on progesterone metabolism in lactating dairy cows. Theriogenology, 2012, 78, 878-886.	0.9	6
60	Effects of increasing levels of stearidonic acid on methane production in a rumen in vitro system. Animal Feed Science and Technology, 2012, 173, 252-260.	1.1	8
61	Analysis of archaeal ether lipids in bovine faeces. Animal Feed Science and Technology, 2011, 166-167, 87-92.	1.1	20
62	Nitrogen partitioning and isotopic fractionation in dairy cows consuming diets based on a range of contrasting forages. Journal of Dairy Science, 2011, 94, 2031-2041.	1.4	43
63	Effects of dietary protein concentration and balance of absorbable amino acids on productive responses of dairy cows fed corn silage-based diets. Journal of Dairy Science, 2011, 94, 4647-4656.	1.4	33
64	SIMSDAIRY: A modelling framework to identify sustainable dairy farms in the UK. Framework description and test for organic systems and N fertiliser optimisation. Science of the Total Environment, 2011, 409, 3993-4009.	3.9	62
65	Effects of lipid-encapsulated conjugated linoleic acid supplementation on milk production, bioenergetic status and indicators of reproductive performance in lactating dairy cows. Journal of Dairy Research, 2011, 78, 308-317.	0.7	24
66	Effects of mixtures of red clover and maize silages on the partitioning of dietary nitrogen between milk and urine by dairy cows. Animal, 2010, 4, 732-738.	1.3	17
67	Effects of forage NDF content and body condition score on forage intake by Holstein–Friesian dairy cows in the dry period. Animal, 2010, 4, 76-80.	1.3	3
68	Archaeol – a biomarker for foregut fermentation in modern and ancient herbivorous mammals?. Organic Geochemistry, 2010, 41, 467-472.	0.9	38
69	Using microbial fatty acids to improve understanding of the contribution of solid associated bacteria to microbial mass in the rumen. Animal Feed Science and Technology, 2009, 150, 197-206.	1.1	30
70	Effects of dietary starch source and buffers on milk responses and rumen fatty acid biohydrogenation in dairy cows fed maize silage-based diets. Animal Feed Science and Technology, 2009, 152, 267-277.	1.1	19
71	Effects of silage digestibility on intake and body reserves of dry cows and performance in the first part of the next lactation. Animal, 2009, 3, 1721-1727.	1.3	2
72	Effects of dietary sulphur sources on concentrations of hydrogen sulphide in the rumen head-space gas of dairy cows. Animal, 2007, 1, 531-535.	1.3	5

#	Article	IF	CITATIONS
73	Apparent Recovery of Duodenal Odd- and Branched-Chain Fatty Acids in Milk of Dairy Cows. Journal of Dairy Science, 2007, 90, 1775-1780.	1.4	41
74	Effects of Fatty Acid Oxidation Products (Green Odor) on Rumen Bacterial Populations and Lipid Metabolism In Vitro. Journal of Dairy Science, 2007, 90, 3874-3882.	1.4	22
75	Effects of Dietary Protein and Starch on Intake, Milk Production, and Milk Fatty Acid Profiles of Dairy Cows Fed Corn Silage-Based Diets. Journal of Dairy Science, 2007, 90, 1429-1439.	1.4	53
76	Effect of variation in the proportion of solid- and liquid-associated rumen bacteria in duodenal contents on the estimation of duodenal bacterial nitrogen flow. Journal of Animal and Feed Sciences, 2007, 16, 37-42.	0.4	4
77	Effect of Forage:Concentrate Ratio on Fatty Acid Composition of Rumen Bacteria Isolated From Ruminal and Duodenal Digesta. Journal of Dairy Science, 2006, 89, 2668-2678.	1.4	80
78	Evaluation of Palm Kernel Meal and Corn Distillers Grains in Corn Silage-Based Diets for Lactating Dairy Cows. Journal of Dairy Science, 2006, 89, 2705-2715.	1.4	30
79	Effects of Dairy Cow Diet Forage Proportion on Duodenal Nutrient Supply and Urinary Purine Derivative Excretion. Journal of Dairy Science, 2006, 89, 3552-3562.	1.4	88
80	Milk Odd- and Branched-Chain Fatty Acids in Relation to the Rumen Fermentation Pattern. Journal of Dairy Science, 2006, 89, 3954-3964.	1.4	121
81	Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems. Animal Feed Science and Technology, 2006, 131, 168-206.	1.1	693
82	Factors affecting odd- and branched-chain fatty acids in milk: A review. Animal Feed Science and Technology, 2006, 131, 389-417.	1.1	861
83	Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 2. Lipids1. Journal of Animal Science, 2006, 84, 3061-3070.	0.2	44
84	Effects of high-sugar ryegrass silage and mixtures with red clover silage on ruminant digestion. 1. In vitro and in vivo studies of nitrogen utilization1. Journal of Animal Science, 2006, 84, 3049-3060.	0.2	373
85	Effect of forage: concentrate ratio on ruminal metabolism and duodenal flow of fatty acids in beef steers. Animal Science, 2006, 82, 31-40.	1.3	20
86	Evaluation of the effects of synchronising the availability of N and energy on rumen function and production responses of dairy cows $\hat{a} \in \hat{a}$ a review. Animal Research, 2006, 55, 1-24.	0.6	49
87	Targets for milk fat research: nutrient, nuisance or nutraceutical?. Journal of Agricultural Science, 2005, 143, 359-367.	0.6	7
88	Use of Odd and Branched-Chain Fatty Acids in Rumen Contents and Milk as a Potential Microbial Marker. Journal of Dairy Science, 2005, 88, 1031-1042.	1.4	96
89	Fatty Acid Profiles Associated with Microbial Colonization of Freshly Ingested Grass and Rumen Biohydrogenation. Journal of Dairy Science, 2005, 88, 3220-3230.	1.4	43
90	Priming the dairy cow for lactation: a review of dry cow feeding strategies. Animal Research, 2004, 53, 453-473.	0.6	59

#	Article	IF	CITATIONS
91	Plant-mediated lipolysis and proteolysis in red clover with different polyphenol oxidase activities. Journal of the Science of Food and Agriculture, 2004, 84, 1639-1645.	1.7	414
92	Effects of Silage Species and Supplemental Vitamin E on the Oxidative Stability of Milk. Journal of Dairy Science, 2004, 87, 406-412.	1.4	71
93	Reducing Concentrate Supplementation in Dairy Cow Diets While Maintaining Milk Production with Pea-Wheat Intercrops. Journal of Dairy Science, 2004, 87, 3398-3406.	1.4	20
94	Odd and branched chain fatty acids to estimate proportions of cellulolytic and amylolytic particle associated bacteria. Journal of Animal and Feed Sciences, 2004, 13, 235-238.	0.4	6
95	On the relationship between lactational performance and health: is it yield or metabolic imbalance that cause production diseases in dairy cattle? A position paper. Livestock Science, 2003, 83, 277-308.	1.2	336
96	Use of Principal Component Analysis to Investigate the Origin of Heptadecenoic and Conjugated Linoleic Acids in Milk. Journal of Dairy Science, 2003, 86, 4047-4053.	1.4	79
97	Comparison of Grass and Legume Silages for Milk Production. 1. Production Responses with Different Levels of Concentrate. Journal of Dairy Science, 2003, 86, 2598-2611.	1.4	239
98	Comparison of Grass and Legume Silages for Milk Production. 2. In Vivo and In Sacco Evaluations of Rumen Function. Journal of Dairy Science, 2003, 86, 2612-2621.	1.4	158
99	Nitrogen Supplementation of Corn Silages. 1. Effects on Feed Intake and Milk Production of Dairy Cows. Journal of Dairy Science, 2003, 86, 4008-4019.	1.4	13
100	Nitrogen Supplementation of Corn Silages. 2. Assessing Rumen Function Using Fatty Acid Profiles of Bovine Milk. Journal of Dairy Science, 2003, 86, 4020-4032.	1.4	37
101	Forage breeding and management to increase the beneficial fatty acid content of ruminant products. Proceedings of the Nutrition Society, 2003, 62, 329-336.	0.4	105
102	The effect of clover silages on long chain fatty acid rumen transformations and digestion in beef steers. Animal Science, 2003, 76, 491-501.	1.3	373
103	Effects of Level of Concentrate Feeding During the Second Gestation of Holstein-Friesian Dairy Cows. 1. Feed Intake and Milk Production. Journal of Dairy Science, 2002, 85, 169-177.	1.4	17
104	Effects of Level of Concentrate Feeding During the Second Gestation of Holstein-Friesian Dairy Cows. 2. Nitrogen Balance and Plasma Metabolites. Journal of Dairy Science, 2002, 85, 178-189.	1.4	24
105	Milk Production and Composition, Ovarian Function, and Prostaglandin Secretion of Dairy Cows Fed Omega-3 Fats. Journal of Dairy Science, 2002, 85, 889-899.	1.4	152
106	Forage Intake, Meal Patterns, and Milk Production of Lactating Dairy Cows Fed Grass Silage or Pea-Wheat Bi-Crop Silages. Journal of Dairy Science, 2002, 85, 3035-3044.	1.4	24
107	Effects of varying the energy and protein supply to dry cows on high-forage systems. Livestock Science, 2002, 76, 125-136.	1.2	9
108	Effects of a stay-green trait on the concentrations and stability of fatty acids in perennial ryegrass. Grass and Forage Science, 2002, 57, 360-366.	1.2	23

#	Article	IF	CITATIONS
109	Assessment of Rumen Processes by Selected-Ion-Flow-Tube Mass Spectrometric Analysis of Rumen Gases. Journal of Dairy Science, 2001, 84, 1438-1444.	1.4	35
110	Development of a Simple In Vitro Assay for Estimating Net Rumen Acid Load from Diet Ingredients. Journal of Dairy Science, 2001, 84, 1109-1117.	1.4	19
111	Rumen Acid Production from Dairy Feeds. 1. Effects on Feed Intake and Milk Production of Dairy Cows Offered Grass or Corn Silages. Journal of Dairy Science, 2001, 84, 2721-2729.	1.4	17
112	Rumen Acid Production from Dairy Feeds. 2. Effects of Diets Based on Corn Silage on Feed Intake and Milk Yield. Journal of Dairy Science, 2001, 84, 2730-2737.	1.4	4
113	Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass and Forage Science, 2001, 56, 68-74.	1.2	169
114	Milk production, milk composition, and reproductive function of dairy cows fed different fats. Canadian Journal of Animal Science, 2001, 81, 263-271.	0.7	86
115	Microbial protein supply from the rumen. Animal Feed Science and Technology, 2000, 85, 1-21.	1.1	181
116	Effects of Altering Energy and Protein Supply to Dairy Cows During the Dry Period. 1. Intake, Body Condition, and Milk Production. Journal of Dairy Science, 2000, 83, 1782-1794.	1.4	63
117	Effects of Altering the Energy and Protein Supply to Dairy Cows During the Dry Period. 2. Metabolic and Hormonal Responses. Journal of Dairy Science, 2000, 83, 1795-1805.	1.4	35
118	Comparison of energy and protein sources offered at low levels in grass-silage-based diets for dairy cows. Animal Science, 1999, 68, 789-799.	1.3	25
119	Effects of extended wilting, shading and chemical additives on the fatty acids in laboratory grass silages. Grass and Forage Science, 1998, 53, 219-224.	1.2	103
120	Proportions of Volatile Fatty Acids in Relation to the Chemical Composition of Feeds Based on Grass Silage. Journal of Dairy Science, 1998, 81, 1331-1344.	1.4	54
121	Diet Choice by Dairy Cows. 1. Selection of Feed Protein Content During the First Half of Lactation. Journal of Dairy Science, 1998, 81, 2657-2669.	1.4	34
122	Diet Choice by Dairy Cows. 2. Selection for Metabolizable Protein or for Ruminally Degradable Protein?. Journal of Dairy Science, 1998, 81, 2670-2680.	1.4	37
123	The effect of dietary fat and metabolizable energy supply on milk protein concentration of dairy cows. Animal Science, 1998, 67, 1-8.	1.3	2
124	Prediction of the voluntary intake potential of grass silage by sheep and dairy cows from laboratory silage measurements. Animal Science, 1998, 66, 357-367.	1.3	22
125	Supplementation of grass silage-based diets with small quantities of concentrates: strategies for allocating concentrate crude protein. Animal Science, 1998, 67, 17-26.	1.3	22
126	Factors affecting water intakes of lactating dairy cows offered grass silages differing in fermentation and intake characteristics. Animal Science, 1998, 66, 543-550.	1.3	8

#	Article	IF	CITATIONS
127	Effects of the composition of grass silages on milk production and nitrogen utilization by dairy cows. Animal Science, 1996, 62, 25-34.	1.3	54
128	The influence of dietary energy source and dietary protein level on milk protein concentration from dairy cows. Animal Science, 1996, 63, 1-10.	1.3	13
129	Effect of increasing digestible undegraded protein supply to dairy cows in late gestation on the yield and composition of milk during the subsequent lactation. Animal Science, 1996, 63, 201-213.	1.3	44
130	Comparison of in sacco and in vitro techniques for estimating the rate and extent of rumen fermentation of a range of dietary ingredients. Animal Feed Science and Technology, 1995, 51, 211-229.	1.1	51
131	Once daliy milking of dairy cows: relationship between yield loss and cisternal milk storage. Journal of Dairy Research, 1994, 61, 441-449.	0.7	81
132	Milk accumulation and distribution in the bovine udder during the interval between milkings. Journal of Dairy Research, 1994, 61, 167-177.	0.7	98
133	An investigation of the changes in sites of milk storage in the bovine udder over two lactation cycles. Animal Science, 1993, 57, 379-384.	1.3	1
134	A note on the effect of plane of nutrition on fractional outflow rates from the rumen and urinary allantoin excretion by wether sheep. Animal Science, 1992, 54, 445-448.	1.3	7
135	Effects of diet, level of intake, sodium bicarbonate and monensin on urinary allantoin excretion in sheep. British Journal of Nutrition, 1992, 67, 345-353.	1.2	20
136	Modelling of nitrogen transactions in the dairy cow and their environmental consequences. Livestock Science, 1992, 31, 1-16.	1.2	13
137	Prediction of the true metabolizable energy concentration in forages for ruminants. Animal Science, 1986, 43, 183-194.	1.3	16
138	Identifying cattle with superior growth feed efficiency through their natural 15N abundance and plasma urea concentration: A meta-analysis. , 0, 2, .		1