
Maria Gasset

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Major shrimp allergen peptidomics signatures and potential biomarkers of heat processing. Food Chemistry, 2022, 382, 132567.	8.2	12
2	SWATH-MS-based proteomics reveals functional biomarkers of Th1/Th2 responses of tropomyosin allergy in mouse models. Food Chemistry, 2022, 383, 132474.	8.2	2
3	The Burden of Allergens in Surimi-Based Products Diminishes With Industrial Processing. Journal of Investigational Allergology and Clinical Immunology, 2021, 31, 443-445.	1.3	1
4	Identification of the Dominant T-Cell Epitopes of Lit v 1 Shrimp Major Allergen and Their Functional Overlap with Known B-Cell Epitopes. Journal of Agricultural and Food Chemistry, 2021, 69, 7420-7428.	5.2	12
5	Fish muscle processing into seafood products reduces β-parvalbumin allergenicity. Food Chemistry, 2021, 364, 130308.	8.2	10
6	Proteomics-Based Methodologies for the Detection and Quantification of Seafood Allergens. Foods, 2020, 9, 1134.	4.3	23
7	Distinct Animal Food Allergens Form IgE-Binding Amyloids. Allergies, 2020, 1, 2.	0.8	0
8	Transcriptomic Analysis Reveals the Wound Healing Activity of Mussel Myticin C. Biomolecules, 2020, 10, 133.	4.0	15
9	Reconstruction of fish allergenicity from the content and structural traits of the component β-parvalbumin isoforms. Scientific Reports, 2019, 9, 16298.	3.3	18
10	Are Amyloid Fibrils RNA-Traps? A Molecular Dynamics Perspective. Frontiers in Molecular Biosciences, 2018, 5, 53.	3.5	4
11	Amyloid Assembly Endows Gad m 1 with Biomineralization Properties. Biomolecules, 2018, 8, 13.	4.0	13
12	Preparation of Amyloidogenic Aggregates from EF-Hand β-Parvalbumin and S100 Proteins. Methods in Molecular Biology, 2018, 1779, 167-179.	0.9	5
13	Mapping Amyloid Regions in Gad m 1 with Peptide Arrays. Methods in Molecular Biology, 2018, 1779, 197-207.	0.9	5
14	The amyloid fold of Gad m 1 epitopes governs IgE binding. Scientific Reports, 2016, 6, 32801.	3.3	21
15	PrP charge structure encodes interdomain interactions. Scientific Reports, 2015, 5, 13623.	3.3	20
16	Fish β-parvalbumin acquires allergenic properties by amyloid assembly. Swiss Medical Weekly, 2015, 145, w14128.	1.6	20
17	Failure of Prion Protein Oxidative Folding Guides the Formation of Toxic Transmembrane Forms. Journal of Biological Chemistry, 2012, 287, 36693-36701.	3.4	12
18	Atomic Force Fluorescence Microscopy in the Characterization of Amyloid Fibril Assembly and Oligomeric Intermediates. Methods in Molecular Biology, 2012, 849, 157-167.	0.9	10

MARIA GASSET

#	Article	IF	CITATIONS
19	Featuring Amyloids with Fourier Transform Infrared and Circular Dichroism Spectroscopies. Methods in Molecular Biology, 2012, 849, 53-68.	0.9	13
20	Dynamic Diagnosis of Familial Prion Diseases Supports the β2-α2 Loop as a Universal Interference Target. PLoS ONE, 2011, 6, e19093.	2.5	56
21	Selenomethionine Incorporation into Amyloid Sequences Regulates Fibrillogenesis and Toxicity. PLoS ONE, 2011, 6, e27999.	2.5	17
22	The structural intolerance of the PrP α-fold for polar substitution of the helix-3 methionines. Cellular and Molecular Life Sciences, 2010, 67, 2825-2838.	5.4	16
23	Discrimination between alternate membrane protein topologies in living cells using GFP/YFP tagging and pH exchange. Cellular and Molecular Life Sciences, 2010, 67, 3345-3354.	5.4	5
24	Oxidation of Helix-3 Methionines Precedes the Formation of PK Resistant PrPSc. PLoS Pathogens, 2010, 6, e1000977.	4.7	51
25	Biosynthesis of Prion Protein Nucleocytoplasmic Isoforms by Alternative Initiation of Translation. Journal of Biological Chemistry, 2009, 284, 2787-2794.	3.4	20
26	Detection of oxidized methionine in selected proteins, cellular extracts and blood serums by novel anti-methionine sulfoxide antibodies. Archives of Biochemistry and Biophysics, 2009, 485, 35-40.	3.0	52
27	Methionine Sulfoxides on Prion Protein Helix-3 Switch on the α-Fold Destabilization Required for Conversion. PLoS ONE, 2009, 4, e4296.	2.5	53
28	Methionine Sulfoxides on PrP ^{Sc} : A Prion-Specific Covalent Signature. Biochemistry, 2008, 47, 8866-8873.	2.5	52
29	Chapter 1 Piercing Lipid Bilayers with Peptides. Behavior Research Methods, 2006, 5, 1-23.	4.0	4
30	The Plasma Membrane Ca2+-ATPase Isoform 4 Is Localized in Lipid Rafts of Cerebellum Synaptic Plasma Membranes. Journal of Biological Chemistry, 2006, 281, 447-453.	3.4	90
31	Fourier Transform Infrared and Circular Dichroism Spectroscopies for Amyloid Studies. , 2005, 299, 129-152.		28
32	Rat liver betaine–homocysteine S-methyltransferase equilibrium unfolding: insights into intermediate structure through tryptophan substitutions. Biochemical Journal, 2005, 391, 589-599.	3.7	8
33	PrPSc Incorporation to Cells Requires Endogenous Glycosaminoglycan Expression. Journal of Biological Chemistry, 2005, 280, 17057-17061.	3.4	78
34	Inter- and Intra-octarepeat Cu(II) Site Geometries in the Prion Protein. Journal of Biological Chemistry, 2004, 279, 11753-11759.	3.4	81
35	Cu2+binding triggers αBoPrP assembly into insoluble laminar polymers. FEBS Letters, 2004, 556, 161-166.	2.8	5
36	Role of an Intrasubunit Disulfide in the Association State of the Cytosolic Homo-oligomer Methionine Adenosyltransferase. Journal of Biological Chemistry, 2003, 278, 7285-7293.	3.4	27

MARIA GASSET

#	Article	IF	CITATIONS
37	Reconstitution of Holin Activity with a Synthetic Peptide Containing the 1–32 Sequence Region of EJh, the EJ-1 Phage Holin. Journal of Biological Chemistry, 2003, 278, 3929-3936.	3.4	13
38	Active-site-mutagenesis study of rat liver betaine-homocysteine S-methyltransferase. Biochemical Journal, 2003, 370, 945-952.	3.7	20
39	Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochemical Journal, 2002, 361, 307.	3.7	9
40	Equilibrium unfolding studies of the rat liver methionine adenosyltransferase III, a dimeric enzyme with intersubunit active sites. Biochemical Journal, 2002, 361, 307-315.	3.7	13
41	Prion Protein Interaction with Glycosaminoglycan Occurs with the Formation of Oligomeric Complexes Stabilized by Cu(II) Bridges. Journal of Molecular Biology, 2002, 319, 527-540.	4.2	78
42	Calcium-Dependent Conformational Rearrangements and Protein Stability in Chicken Annexin A5. Biophysical Journal, 2002, 83, 2280-2291.	0.5	28
43	An optimized amphiphilic cationic peptide as an efficient non-viral gene delivery vector. Journal of Gene Medicine, 2000, 2, 455-464.	2.8	32
44	Biophysical Study of the Perturbation of Model Membrane Structure Caused by Seminal Plasma Protein PDC-109. Archives of Biochemistry and Biophysics, 2000, 374, 241-247.	3.0	47
45	Refolding and Characterization of Rat Liver Methionine Adenosyltransferase from Escherichia coli Inclusion Bodies. Protein Expression and Purification, 2000, 19, 219-226.	1.3	27
46	Structural Domain Organization of Gastric H+,K+-ATPase and Its Rearrangement during the Catalytic Cycle. Journal of Biological Chemistry, 1997, 272, 1608-1614.	3.4	12
47	Biochemical and conformational characterisation of HSP-3, a stallion seminal plasma protein of the cysteine-rich secretory protein (CRISP) family. FEBS Letters, 1997, 420, 179-185.	2.8	39
48	Conformational Features and Thermal Stability of Bovine Seminal Plasma Protein PDC-109 Oligomers and Phosphorylcholine-Bound Complexes. FEBS Journal, 1997, 250, 735-744.	0.2	71
49	Structural Characterization of the Unligated and Choline-bound Forms of the Major Pneumococcal Autolysin LytA Amidase. Journal of Biological Chemistry, 1996, 271, 29152-29161.	3.4	36
50	Structural Organization of the Major Autolysin from Streptococcus pneumoniae. Journal of Biological Chemistry, 1996, 271, 6832-6838.	3.4	54
51	Analysis of the Structural Organization and Thermal Stability of two Spermadhesins. Calorimetric, Circular Dichroic and Fourier-Transform Infrared Spectroscopic Studies. FEBS Journal, 1995, 234, 887-896.	0.2	33
52	Predictive study of the conformation of the cytotoxic protein α-sarcin: a structural model to explain α-sarcin-membrane interaction. Journal of Theoretical Biology, 1995, 172, 259-267.	1.7	33
53	Thermal unfolding of the cytotoxin α-sarcin: phospholipid binding induces destabilization of the protein structure. BBA - Proteins and Proteomics, 1995, 1252, 126-134.	2.1	18
54	Spectroscopic characterization of the alkylated α-sarcin cytotoxin: analysis of the structural requirements for the protein-lipid bilayer hydrophobic interaction. BBA - Proteins and Proteomics, 1995, 1252, 43-52.	2.1	15

MARIA GASSET

#	Article	IF	CITATIONS
55	Characterization of the Antifungal Protein Secreted by the MouldAspergillus giganteus. Archives of Biochemistry and Biophysics, 1995, 324, 273-281.	3.0	101
56	Bovine Seminal Ribonuclease Destabilizes Negatively Charged Membranes. Biochemical and Biophysical Research Communications, 1994, 199, 119-124.	2.1	31
57	Overproduction and purification of biologically active native fungal α-sarcin in Escherichia coli. Gene, 1994, 142, 147-151.	2.2	64
58	Molecular Interactions Involved in the Passage of the Cytotoxic Protein α-Sarcin Across Membranes. , 1994, , 269-276.		1
59	Perturbation of the secondary structure of the scrapie prion protein under conditions that alter infectivity Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1-5.	7.1	381
60	Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10962-10966.	7.1	2,133
61	Predicted alpha-helical regions of the prion protein when synthesized as peptides form amyloid Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 10940-10944.	7.1	338
62	Effect of the antitumour protein α-sarcin on the thermotropic behaviour of acid phospholipid vesicles. Biochimica Et Biophysica Acta - Biomembranes, 1991, 1068, 9-16.	2.6	31
63	Acid phospholipid vesicles produce conformational changes on the antitumour protein α-sarcin. BBA - Proteins and Proteomics, 1991, 1080, 51-58.	2.1	40
64	Microsomal membrane fluidity and phosphatidylcholine synthesis in rabbit lung under high oxygen tension. Cell Biochemistry and Function, 1989, 7, 193-199.	2.9	5
65	Molecular aspects of α-sarcin penetration in phospholipid bilayers. Biochemical Society Transactions, 1989, 17, 999-1000.	3.4	8
66	Effect of divalent cations on structureâ€function relationships of the antitumor protein αâ€sarcin. International Journal of Peptide and Protein Research, 1989, 34, 416-422.	0.1	10
67	Conformational study of the antitumor protein α-sarcin. BBA - Proteins and Proteomics, 1988, 953, 280-288.	2.1	57
68	Influence of cholesterol on gramicidin-induced HII phase formation in phosphatidylcholine model membranes. Biochimica Et Biophysica Acta - Biomembranes, 1988, 939, 79-88.	2.6	35
69	Lipid alterations in liver and kidney induced by normobaric hyperoxia: Correlations with changes in microsomal membrane fluidity. Biochemical Medicine and Metabolic Biology, 1987, 37, 269-281.	0.7	13