
Guoshun Zhuang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871985/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chemical Characteristics of PM2.5and PM10in Hazeâ^'Fog Episodes in Beijing. Environmental Science & Technology, 2006, 40, 3148-3155.	10.0	727
2	Link between iron and sulphur cycles suggested by detection of Fe(n) in remote marine aerosols. Nature, 1992, 355, 537-539.	27.8	358
3	The chemistry of the severe acidic precipitation in Shanghai, China. Atmospheric Research, 2008, 89, 149-160.	4.1	174
4	Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. Journal of Environmental Sciences, 2008, 20, 1323-1327.	6.1	153
5	Synchronous role of coupled adsorption and photocatalytic oxidation on ordered mesoporous anatase TiO2–SiO2 nanocomposites generating excellent degradation activity of RhB dye. Applied Catalysis B: Environmental, 2010, 95, 197-207.	20.2	152
6	The importance of vehicle emissions as a source of atmospheric ammonia in the megacity of Shanghai. Atmospheric Chemistry and Physics, 2016, 16, 3577-3594.	4.9	152
7	Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway. Journal of Geophysical Research, 2005, 110, .	3.3	135
8	Heterogeneous Reactions of Sulfur Dioxide on Typical Mineral Particles. Journal of Physical Chemistry B, 2006, 110, 12588-12596.	2.6	129
9	Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures. Atmospheric Chemistry and Physics, 2016, 16, 11635-11647.	4.9	116
10	Airborne Fine Particulate Matter Induces Oxidative Stress and Inflammation in Human Nasal Epithelial Cells. Tohoku Journal of Experimental Medicine, 2016, 239, 117-125.	1.2	110
11	Evidence for High Molecular Weight Nitrogen-Containing Organic Salts in Urban Aerosols. Environmental Science & Technology, 2010, 44, 4441-4446.	10.0	99
12	Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. Journal of Geophysical Research, 2010, 115, .	3.3	87
13	Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research, 2007, 84, 169-181.	4.1	85
14	Nasal epithelial barrier disruption by particulate matter â‰ û .5 μm via tight junction protein degradation. Journal of Applied Toxicology, 2018, 38, 678-687.	2.8	78
15	PM2.5-Induced Oxidative Stress and Mitochondrial Damage in the Nasal Mucosa of Rats. International Journal of Environmental Research and Public Health, 2017, 14, 134.	2.6	76
16	The implication of carbonaceous aerosol to the formation of haze: Revealed from the characteristics and sources of OC/EC over a mega-city in China. Journal of Hazardous Materials, 2011, 190, 529-536.	12.4	74
17	High-performance liquid chromatographic method for the determination of ultratrace amounts of iron(II) in aerosols, rainwater, and seawater. Analytical Chemistry, 1992, 64, 2826-2830.	6.5	65
18	Iron(II) in rainwater, snow, and surface seawater from a coastal environment. Marine Chemistry, 1995, 50, 41-50.	2.3	64

GUOSHUN ZHUANG

#	Article	IF	CITATIONS
19	Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004. Journal of Geophysical Research, 2010, 115, .	3.3	61
20	Source, longâ€range transport, and characteristics of a heavy dust pollution event in Shanghai. Journal of Geophysical Research, 2010, 115, .	3.3	58
21	Risk-Based Prioritization among Air Pollution Control Strategies in the Yangtze River Delta, China. Environmental Health Perspectives, 2010, 118, 1204-1210.	6.0	54
22	Sources of aerosol as determined from elemental composition and size distributions in Beijing. Atmospheric Research, 2010, 95, 197-209.	4.1	52
23	Effects of Asian dust on the atmospheric input of trace elements to the East China Sea. Marine Chemistry, 2014, 163, 19-27.	2.3	51
24	Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia. Atmospheric Chemistry and Physics, 2016, 16, 8157-8180.	4.9	51
25	Mixing of dust with pollution on the transport path of Asian dust — Revealed from the aerosol over Yulin, the north edge of Loess Plateau. Science of the Total Environment, 2011, 409, 573-581.	8.0	47
26	Evolution of particulate sulfate and nitrate along the Asian dust pathway: Secondary transformation and primary pollutants via long-range transport. Atmospheric Research, 2016, 169, 86-95.	4.1	46
27	Three-dimensional interconnected mesoporous anatase TiO2 exhibiting unique photocatalytic performances. Applied Catalysis B: Environmental, 2017, 217, 293-302.	20.2	45
28	Signal Transductions of BEAS-2B Cells in Response to Carcinogenic PM _{2.5} Exposure Based on a Microfluidic System. Analytical Chemistry, 2017, 89, 5413-5421.	6.5	42
29	Inorganic aerosols responses to emission changes in Yangtze River Delta, China. Science of the Total Environment, 2014, 481, 522-532.	8.0	39
30	Variation of sources and mixing mechanism of mineral dust with pollution aerosol—revealed by the two peaks of a super dust storm in Beijing. Atmospheric Research, 2007, 84, 265-279.	4.1	37
31	Insights into the characteristics and sources of primary and secondary organic carbon: High time resolution observation in urban Shanghai. Environmental Pollution, 2018, 233, 1177-1187.	7.5	35
32	Human Excreta as a Stable and Important Source of Atmospheric Ammonia in the Megacity of Shanghai. PLoS ONE, 2015, 10, e0144661.	2.5	34
33	The adsorption of dissolved iron on marine aerosol particles in surface waters of the open ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 1993, 40, 1413-1429.	1.4	31
34	Relation between optical and chemical properties of dust aerosol over Beijing, China. Journal of Geophysical Research, 2010, 115, .	3.3	31
35	Preparation of Secondary Mesopores in Mesoporous Anatase–Silica Nanocomposites with Unprecedentedâ€High Photocatalytic Degradation Performances. Advanced Functional Materials, 2016, 26, 964-976.	14.9	31
36	Combined effects of iron and copper from atmospheric dry deposition on ocean productivity. Geophysical Research Letters, 2017, 44, 2546-2555.	4.0	31

GUOSHUN ZHUANG

#	Article	IF	CITATIONS
37	Composition and mixing of individual particles in dust and nondust conditions of north China, spring 2002. Journal of Geophysical Research, 2006, 111, .	3.3	29
38	Emission of fine organic aerosol from traditional charcoal broiling in China. Journal of Atmospheric Chemistry, 2008, 61, 119-131.	3.2	28
39	The sources and seasonal variations of organic compounds in PM2.5 in Beijing and Shanghai. Journal of Atmospheric Chemistry, 2009, 62, 175-192.	3.2	27
40	Environmentally dependent dust chemistry of a super Asian dust storm in March 2010: observation and simulation. Atmospheric Chemistry and Physics, 2018, 18, 3505-3521.	4.9	24
41	Effects of PM2.5 on mucus secretion and tissue remodeling in a rabbit model of chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2018, 8, 1349-1355.	2.8	23
42	A Pilot Study on Using Urinary 1-Hydroxypyrene Biomarker for Exposure to PAHs in Beijing. Environmental Monitoring and Assessment, 2007, 131, 387-394.	2.7	21
43	Mesoporous anatase crystal-silica nanocomposites with large intrawall mesopores presenting quite excellent photocatalytic performances. Applied Catalysis B: Environmental, 2019, 246, 284-295.	20.2	21
44	Preparation of mesoporous anatase titania with large secondary mesopores and extraordinarily high photocatalytic performances. Applied Catalysis B: Environmental, 2020, 269, 118756.	20.2	17
45	Air Quality over the Yangtze River Delta during the 2010 Shanghai Expo. Aerosol and Air Quality Research, 2013, 13, 1655-1666.	2.1	17
46	Effects of Ursolic Acid on the Expression of Th1–Th2-related Cytokines in a Rat Model of Allergic Rhinitis After PM2.5 Exposure. American Journal of Rhinology and Allergy, 2020, 34, 587-596.	2.0	16
47	Ursolic Acid Alleviates Mucus Secretion and Tissue Remodeling in Rat Model of Allergic Rhinitis After PM2.5 Exposure. American Journal of Rhinology and Allergy, 2021, 35, 272-279.	2.0	16
48	Quantitative analysis of aliphatic amines in urban aerosols based on online derivatization and high performance liquid chromatography. Environmental Sciences: Processes and Impacts, 2016, 18, 796-801.	3.5	15
49	Effectiveness of SO2 emission control policy on power plants in the Yangtze River Delta, China—post-assessment of the 11th Five-Year Plan. Environmental Science and Pollution Research, 2017, 24, 8243-8255.	5.3	12
50	Effects of N-acetylcysteine on oxidative stress and inflammation reactions in a rat model of allergic rhinitis after PM2.5 exposure. Biochemical and Biophysical Research Communications, 2020, 533, 275-281.	2.1	12
51	The chemistry of heavy haze over Urumqi, Central Asia. Journal of Atmospheric Chemistry, 2008, 61, 57-72.	3.2	10
52	Aerosol oxalate and its implication to haze pollution in Shanghai, China. Science Bulletin, 2014, 59, 227-238.	1.7	10
53	A Typical Formation Mechanism of Heavy Haze-Fog Induced by Coal Combustion in an Inland City in North-Western China. Aerosol and Air Quality Research, 2017, 17, 98-107.	2.1	10
54	Characterization of Airborne Microbial Aerosols during a Long-range Transported Dust Event in Eastern China: Bacterial Community, Influencing Factors, and Potential Health Effects. Aerosol and Air Quality Research, 2020, 20, 2834-2845.	2.1	10

GUOSHUN ZHUANG

#	Article	IF	CITATIONS
55	Luxury uptake of aerosol iron by <i>Trichodesmium</i> in the western tropical North Atlantic. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	9
56	Characteristics and source of black carbon aerosol over Taklimakan Desert. Science China Chemistry, 2010, 53, 1202-1209.	8.2	8
57	Preparation of three-dimensional interconnected mesoporous anatase TiO2-SiO2 nanocomposites with high photocatalytic activities. Chinese Journal of Catalysis, 2016, 37, 846-854.	14.0	8
58	Impact of mixed anthropogenic and natural emissions on air quality and eco-environment—the major water-soluble components in aerosols from northwest to offshore isle. Air Quality, Atmosphere and Health, 2018, 11, 521-534.	3.3	8
59	Effects of rosmarinic acid on the inflammatory response in allergic rhinitis rat models after PM2.5 exposure. Journal of Clinical Laboratory Analysis, 2022, 36, e24316.	2.1	7
60	Instrumental neutron activation analysis of extractable organohalogens in PM2.5 and PM10 in Beijing, China. Journal of Radioanalytical and Nuclear Chemistry, 2007, 271, 115-118.	1.5	6
61	Characteristics of ambient 1-min PM2.5 variation in Beijing. Environmental Monitoring and Assessment, 2010, 165, 137-146.	2.7	6
62	First long-term detection of paleo-oceanic signature of dust aerosol at the southern marginal area of the Taklimakan Desert. Scientific Reports, 2018, 8, 6779.	3.3	6
63	Toxicological Effects of Artificial Fine Particulate Matter in Rats through Induction of Oxidative Stress and Inflammation. Tohoku Journal of Experimental Medicine, 2021, 255, 19-25.	1.2	5
64	Large-scale distribution of elements in Chinese aerosol. Particuology: Science and Technology of Particles, 2007, 5, 395-400.	0.4	4
65	Community Structure and Influencing Factors of Airborne Microbial Aerosols over Three Chinese Cities with Contrasting Social-Economic Levels. Atmosphere, 2020, 11, 317.	2.3	4
66	Characteristics and source of black carbon over Taklimakan Desert. Scientia Sinica Chimica, 2010, 40, 556-566.	0.4	3
67	Model Study on the Transport and Mixing of Dust Aerosols and Pollutants during an Asian Dust Storm in March 2002. Terrestrial, Atmospheric and Oceanic Sciences, 2007, 18, 437.	0.6	3
68	Correction to "Chemistry of iron in marine aerosols― Global Biogeochemical Cycles, 1992, 6, 321-321.	4.9	0