Tracey Crosbie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871872/publications.pdf

Version: 2024-02-01

36	942	17 h-index	30
papers	citations		g-index
38	38	38	937
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Work–life Balance and Working from Home. Social Policy and Society, 2004, 3, 223-233.	0.7	118
2	Variable Geometries of Connection: Urban Digital Divides and the Uses of Information Technology. Urban Studies, 2006, 43, 2551-2570.	2.2	99
3	Energy-efficiency interventions in housing: learning from the inhabitants. Building Research and Information, 2010, 38, 70-79.	2.0	75
4	Technology, Time–Space, and the Remediation of Neighbourhood Life. Environment and Planning A, 2007, 39, 2405-2422.	2.1	68
5	Defining and operationalising the concept of an energy positive neighbourhood. Energy Conversion and Management, 2016, 125, 133-140.	4.4	67
6	Potential for reducing electricity demand for lighting in households: An exploratory socio-technical study. Energy Policy, 2009, 37, 1021-1031.	4.2	60
7	Household energy consumption and consumer electronics: The case of television. Energy Policy, 2008, 36, 2191-2199.	4.2	57
8	Improving the energy performance of the built environment: The potential of virtual collaborative life cycle tools. Automation in Construction, 2011, 20, 205-216.	4.8	35
9	Load forecasting and dispatch optimisation for decentralised co-generation plant with dual energy storage. Applied Energy, 2017, 186, 304-320.	5.1	35
10	Household Energy Studies: The Gap between Theory and Method. Energy and Environment, 2006, 17, 735-753.	2.7	31
11	Designing low carbon buildings: A framework to reduce energy consumption and embed the use of renewables. Sustainable Cities and Society, 2013, 8, 63-71.	5.1	31
12	Energy profiling in the lifeâ€cycle assessment of buildings. Management of Environmental Quality, 2010, 21, 20-31.	2.2	30
13	Demand Response Technology Readiness Levels for Energy Management in Blocks of Buildings. Buildings, 2018, 8, 13.	1.4	26
14	A visual energy performance assessment and decision support tool for dwellings. Visualization in Engineering, 2013, 1 , .	8.8	23
15	On the use of thermal inertia in building stock to leverage decentralised demand side frequency regulation services. Applied Thermal Engineering, 2018, 133, 97-106.	3.0	22
16	En'lightening' energy use: the co-evolution of household lighting practices. International Journal of Environmental Technology and Management, 2008, 9, 220.	0.1	21
17	Optimal Dispatch of Aggregated HVAC Units for Demand Response: An Industry 4.0 Approach. Energies, 2019, 12, 4320.	1.6	20
18	Degradation Cost Analysis of Li-Ion Batteries in the Capacity Market with Different Degradation Models. Electronics (Switzerland), 2020, 9, 90.	1.8	20

#	Article	IF	Citations
19	Demand response in blocks of buildings: opportunities and requirements. Entrepreneurship and Sustainability Issues, 2017, 4, 271-281.	0.4	17
20	A holistic approach to delivering sustainable design education in civil engineering. International Journal of Sustainability in Higher Education, 2018, 19, 197-216.	1.6	15
21	Towards Self-Sustainable Island Grids through Optimal Utilization of Renewable Energy Potential and Community Engagement. Energies, 2020, 13, 3386.	1.6	13
22	On the Role of Regulatory Policy on the Business Case for Energy Storage in Both EU and UK Energy Systems: Barriers and Enablers. Energies, 2020, 13, 1080.	1.6	9
23	Identification of Value Proposition and Development of Innovative Business Models for Demand Response Products and Services Enabled by the DR-BOB Solution. Buildings, 2017, 7, 93.	1.4	7
24	Mind the gap when implementing technologies intended to reduce or shift energy consumption in blocks-of-buildings. Energy and Environment, 2020, 31, 613-633.	2.7	6
25	A Decentralized Informatics, Optimization, and Control Framework for Evolving Demand Response Services. Energies, 2020, 13, 4191.	1.6	6
26	Lifetime Degradation Cost Analysis for Li-Ion Batteries in Capacity Markets using Accurate Physics-Based Models. Energies, 2020, 13, 2816.	1.6	5
27	Transitioning to Society 5.0 in Africa: Tools to Support ICT Infrastructure Sharing. Data, 2021, 6, 69.	1.2	5
28	The Transition to Clean Energy: Are People Living in Island Communities Ready for Smart Grids and Demand Response?. Energies, 2021, 14, 6218.	1.6	5
29	Telecommunication Infrastructure Sharing a Remedy for the Reduction of Network Operator Cost and Environmental Pollution. , 2020, , .		3
30	Rethinking water policy in India with the scope of metering towards sustainable water future. Clean Technologies and Environmental Policy, 2021, 23, 2471-2495.	2.1	3
31	Illuminating Household Energy Demand and the Policies for Its Reduction. Energy and Environment, 2008, 19, 979-993.	2.7	2
32	Common Language of Sustainability for Built Environment Professionals—The Quintuple Helix Model for Higher Education. Energies, 2020, 13, 5860.	1.6	2
33	Assessing Energy Improvement Potential from Efficiency and Renewable Interventions at Neighborhood Level. , 2014, , .		1
34	Integrating Technologies for Demand Response in Blocks of Buildings - A UK Case Study. , 0, , .		1
35	Reducing Energy Consumption and Carbon Footprint by Smart and Sustainable Use. Proceedings (mdpi), 2017, 1, .	0.2	0
36	An Analytic Hierarchy Process (AHP) Framework for Feature Evaluation of Smart Electricity Meters in India., 2021,,.		0