List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871838/publications.pdf Version: 2024-02-01

Ru-Rong L

#	Article	IF	CITATIONS
1	Central sensitization and LTP: do pain and memory share similar mechanisms?. Trends in Neurosciences, 2003, 26, 696-705.	4.2	1,225
2	p38 MAPK Activation by NGF in Primary Sensory Neurons after Inflammation Increases TRPV1 Levels and Maintains Heat Hyperalgesia. Neuron, 2002, 36, 57-68.	3.8	1,102
3	Different immune cells mediate mechanical pain hypersensitivity in male and female mice. Nature Neuroscience, 2015, 18, 1081-1083.	7.1	1,041
4	Cytokine Mechanisms of Central Sensitization: Distinct and Overlapping Role of Interleukin-1β, Interleukin-6, and Tumor Necrosis Factor-α in Regulating Synaptic and Neuronal Activity in the Superficial Spinal Cord. Journal of Neuroscience, 2008, 28, 5189-5194.	1.7	990
5	Pain regulation by non-neuronal cells and inflammation. Science, 2016, 354, 572-577.	6.0	890
6	MAP kinase and pain. Brain Research Reviews, 2009, 60, 135-148.	9.1	872
7	Glia and pain: Is chronic pain a gliopathy?. Pain, 2013, 154, S10-S28.	2.0	868
8	p38 Mitogen-Activated Protein Kinase Is Activated after a Spinal Nerve Ligation in Spinal Cord Microglia and Dorsal Root Ganglion Neurons and Contributes to the Generation of Neuropathic Pain. Journal of Neuroscience, 2003, 23, 4017-4022.	1.7	771
9	Neuroinflammation and Central Sensitization in Chronic and Widespread Pain. Anesthesiology, 2018, 129, 343-366.	1.3	757
10	Emerging targets in neuroinflammation-driven chronic pain. Nature Reviews Drug Discovery, 2014, 13, 533-548.	21.5	754
11	Nociceptive-specific activation of ERK in spinal neurons contributes to pain hypersensitivity. Nature Neuroscience, 1999, 2, 1114-1119.	7.1	699
12	ERK is sequentially activated in neurons, microglia, and astrocytes by spinal nerve ligation and contributes to mechanical allodynia in this neuropathic pain model. Pain, 2005, 114, 149-159.	2.0	669
13	Neuronal Plasticity and Signal Transduction in Nociceptive Neurons: Implications for the Initiation and Maintenance of Pathological Pain. Neurobiology of Disease, 2001, 8, 1-10.	2.1	661
14	Distinct roles of matrix metalloproteases in the early- and late-phase development of neuropathic pain. Nature Medicine, 2008, 14, 331-336.	15.2	658
15	Nociceptors Are Interleukin-1Î ² Sensors. Journal of Neuroscience, 2008, 28, 14062-14073.	1.7	533
16	Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. , 2010, 126, 56-68.		512
17	Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature Medicine, 2010, 16, 592-597.	15.2	503
18	p38 MAPK, Microglial Signaling, and Neuropathic Pain. Molecular Pain, 2007, 3, 1744-8069-3-33.	1.0	500

#	Article	IF	CITATIONS
19	JNK-Induced MCP-1 Production in Spinal Cord Astrocytes Contributes to Central Sensitization and Neuropathic Pain. Journal of Neuroscience, 2009, 29, 4096-4108.	1.7	497
20	Microglia in Pain: Detrimental and Protective Roles in Pathogenesis and Resolution of Pain. Neuron, 2018, 100, 1292-1311.	3.8	496
21	A Peptide c-Jun N-Terminal Kinase (JNK) Inhibitor Blocks Mechanical Allodynia after Spinal Nerve Ligation: Respective Roles of JNK Activation in Primary Sensory Neurons and Spinal Astrocytes for Neuropathic Pain Development and Maintenance. Journal of Neuroscience, 2006, 26, 3551-3560.	1.7	473
22	ERK MAP Kinase Activation in Superficial Spinal Cord Neurons Induces Prodynorphin and NK-1 Upregulation and Contributes to Persistent Inflammatory Pain Hypersensitivity. Journal of Neuroscience, 2002, 22, 478-485.	1.7	429
23	Macrophage proresolving mediator maresin 1 stimulates tissue regeneration and controls pain. FASEB Journal, 2012, 26, 1755-1765.	0.2	401
24	Neurotrophins: Peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 9385-9390.	3.3	399
25	Chronic Morphine Induces Downregulation of Spinal Glutamate Transporters: Implications in Morphine Tolerance and Abnormal Pain Sensitivity. Journal of Neuroscience, 2002, 22, 8312-8323.	1.7	391
26	Evidence for brain glial activation in chronic pain patients. Brain, 2015, 138, 604-615.	3.7	372
27	Phosphatidylinositol 3-Kinase Activates ERK in Primary Sensory Neurons and Mediates Inflammatory Heat Hyperalgesia through TRPV1 Sensitization. Journal of Neuroscience, 2004, 24, 8300-8309.	1.7	368
28	lonotropic and Metabotropic Receptors, Protein Kinase A, Protein Kinase C, and Src Contribute to C-Fiber-Induced ERK Activation and cAMP Response Element-Binding Protein Phosphorylation in Dorsal Horn Neurons, Leading to Central Sensitization. Journal of Neuroscience, 2004, 24, 8310-8321.	1.7	348
29	Targeting Astrocyte Signaling for Chronic Pain. Neurotherapeutics, 2010, 7, 482-493.	2.1	348
30	Astrocytic neuroligins control astrocyte morphogenesis and synaptogenesis. Nature, 2017, 551, 192-197.	13.7	343
31	c-Fos or pERK, Which is a Better Marker for Neuronal Activation and Central Sensitization After Noxious Stimulation and Tissue Injury?. Open Pain Journal, 2009, 2, 11-17.	0.4	332
32	Role of the CX3CR1/p38 MAPK pathway in spinal microglia for the development of neuropathic pain following nerve injury-induced cleavage of fractalkine. Brain, Behavior, and Immunity, 2007, 21, 642-651.	2.0	322
33	Expression of mu-, delta-, and kappa-opioid receptor-like immunoreactivities in rat dorsal root ganglia after carrageenan-induced inflammation. Journal of Neuroscience, 1995, 15, 8156-8166.	1.7	317
34	Emerging roles of resolvins in the resolution of inflammation and pain. Trends in Neurosciences, 2011, 34, 599-609.	4.2	298
35	Astrocytes in chronic pain and itch. Nature Reviews Neuroscience, 2019, 20, 667-685.	4.9	296
36	Neuronal Apoptosis Associated with Morphine Tolerance: Evidence for an Opioid-Induced Neurotoxic Mechanism. Journal of Neuroscience, 2002, 22, 7650-7661.	1.7	276

#	Article	IF	CITATIONS
37	Roles of inflammation, neurogenic inflammation, and neuroinflammation in pain. Journal of Anesthesia, 2019, 33, 131-139.	0.7	275
38	Cell Signaling and the Genesis of Neuropathic Pain. Science Signaling, 2004, 2004, re14-re14.	1.6	274
39	Emerging role of Toll-like receptors in the control of pain and itch. Neuroscience Bulletin, 2012, 28, 131-144.	1.5	274
40	Inhibition of mechanical allodynia in neuropathic pain by TLR5-mediated A-fiber blockade. Nature Medicine, 2015, 21, 1326-1331.	15.2	272
41	JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain, 2011, 134, 1127-1139.	3.7	260
42	Spinal inhibition of p38 MAP kinase reduces inflammatory and neuropathic pain in male but not female mice: Sex-dependent microglial signaling in the spinal cord. Brain, Behavior, and Immunity, 2016, 55, 70-81.	2.0	253
43	Extracellular MicroRNAs Activate Nociceptor Neurons to Elicit Pain via TLR7 and TRPA1. Neuron, 2014, 82, 47-54.	3.8	250
44	Removal of GABAergic inhibition facilitates polysynaptic A fiber-mediated excitatory transmission to the superficial spinal dorsal horn. Molecular and Cellular Neurosciences, 2003, 24, 818-830.	1.0	247
45	Connexin-43 induces chemokine release from spinal cord astrocytes to maintain late-phase neuropathic pain in mice. Brain, 2014, 137, 2193-2209.	3.7	236
46	Astrocytes Assemble Thalamocortical Synapses by Bridging NRX1α and NL1 via Hevin. Cell, 2016, 164, 183-196.	13.5	233
47	CXCL13 drives spinal astrocyte activation and neuropathic pain via CXCR5. Journal of Clinical Investigation, 2016, 126, 745-761.	3.9	233
48	Glial Cells and Chronic Pain. Neuroscientist, 2010, 16, 519-531.	2.6	232
49	A feed-forward spinal cord glycinergic neural circuit gates mechanical allodynia. Journal of Clinical Investigation, 2013, 123, 4050-4062.	3.9	230
50	VGLUT2-Dependent Glutamate Release from Nociceptors Is Required to Sense Pain and Suppress Itch. Neuron, 2010, 68, 543-556.	3.8	226
51	Toll-like receptor 7 mediates pruritus. Nature Neuroscience, 2010, 13, 1460-1462.	7.1	217
52	Resolvin D2 Is a Potent Endogenous Inhibitor for Transient Receptor Potential Subtype V1/A1, Inflammatory Pain, and Spinal Cord Synaptic Plasticity in Mice: Distinct Roles of Resolvin D1, D2, and E1. Journal of Neuroscience, 2011, 31, 18433-18438.	1.7	210
53	Resolving TRPV1- and TNF-α-Mediated Spinal Cord Synaptic Plasticity and Inflammatory Pain with Neuroprotectin D1. Journal of Neuroscience, 2011, 31, 15072-15085.	1.7	207
54	Chemokine contribution to neuropathic pain: Respective induction of CXCL1 and CXCR2 in spinal cord astrocytes and neurons. Pain, 2013, 154, 2185-2197.	2.0	206

#	Article	IF	CITATIONS
55	TNF-alpha contributes to spinal cord synaptic plasticity and inflammatory pain: Distinct role of TNF receptor subtypes 1 and 2. Pain, 2011, 152, 419-427.	2.0	205
56	Phosphorylation of Transcription Factor CREB in Rat Spinal Cord after Formalin-Induced Hyperalgesia: Relationship to <i>c-fos</i> Induction. Journal of Neuroscience, 1997, 17, 1776-1785.	1.7	204
57	Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nature Medicine, 2011, 17, 822-829.	15.2	200
58	Microglia: A Promising Target for Treating Neuropathic and Postoperative Pain, and Morphine Tolerance. Journal of the Formosan Medical Association, 2011, 110, 487-494.	0.8	194
59	Targeting dorsal root ganglia and primary sensory neurons for the treatment of chronic pain. Expert Opinion on Therapeutic Targets, 2017, 21, 695-703.	1.5	192
60	Intracellular Signaling in Primary Sensory Neurons and Persistent Pain. Neurochemical Research, 2008, 33, 1970-1978.	1.6	189
61	β-Endorphin-containing memory-cells and μ-opioid receptors undergo transport to peripheral inflamed tissue. Journal of Neuroimmunology, 2001, 115, 71-78.	1.1	185
62	Do glial cells control pain?. Neuron Glia Biology, 2007, 3, 255-268.	2.0	183
63	GPR37 regulates macrophage phagocytosis and resolution of inflammatory pain. Journal of Clinical Investigation, 2018, 128, 3568-3582.	3.9	183
64	Repetitive transcranial magnetic stimulation activates specific regions in rat brain. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15635-15640.	3.3	179
65	Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biology, 2006, 2, 259-269.	2.0	176
66	Neurokinin-1 Receptor Enhances TRPV1 Activity in Primary Sensory Neurons via PKCε: A Novel Pathway for Heat Hyperalgesia. Journal of Neuroscience, 2007, 27, 12067-12077.	1.7	173
67	Intrathecal bone marrow stromal cells inhibit neuropathic pain via TGF-Î ² secretion. Journal of Clinical Investigation, 2015, 125, 3226-3240.	3.9	173
68	Extracellular caspase-6 drives murine inflammatory pain via microglial TNF-α secretion. Journal of Clinical Investigation, 2014, 124, 1173-1186.	3.9	171
69	Upregulation of spinal cannabinoid-1-receptors following nerve injury enhances the effects of Win 55,212-2 on neuropathic pain behaviors in rats. Pain, 2003, 105, 275-283.	2.0	164
70	Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia, 2012, 60, 1660-1670.	2.5	160
71	Peripheral axonal injury results in reduced μ opioid receptor pre- and post-synaptic action in the spinal cordâ~†. Pain, 2005, 117, 77-87.	2.0	158
72	Delayed Activation of Spinal Microglia Contributes to the Maintenance of Bone Cancer Pain in Female Wistar Rats via P2X7 Receptor and IL-18. Journal of Neuroscience, 2015, 35, 7950-7963.	1.7	157

#	Article	IF	CITATIONS
73	Disruption of ErbB receptor signaling in adult non-myelinating Schwann cells causes progressive sensory loss. Nature Neuroscience, 2003, 6, 1186-1193.	7.1	154
74	New insights into the mechanisms of itch: are pain and itch controlled by distinct mechanisms?. Pflugers Archiv European Journal of Physiology, 2013, 465, 1671-1685.	1.3	154
75	Microglia and Spinal Cord Synaptic Plasticity in Persistent Pain. Neural Plasticity, 2013, 2013, 1-10.	1.0	152
76	Matrix metalloprotease regulation of neuropathic pain. Trends in Pharmacological Sciences, 2009, 30, 336-340.	4.0	151
77	PD-L1 inhibits acute and chronic pain by suppressing nociceptive neuron activity via PD-1. Nature Neuroscience, 2017, 20, 917-926.	7.1	148
78	Expression of neuropeptide Y and neuropeptide Y (Y1) receptor mRNA in rat spinal cord and dorsal root ganglia following peripheral tissue inflammation. Journal of Neuroscience, 1994, 14, 6423-6434.	1.7	147
79	Endogenous Tumor Necrosis Factor α (TNFα) Requires TNF Receptor Type 2 to Generate Heat Hyperalgesia in a Mouse Cancer Model. Journal of Neuroscience, 2008, 28, 5072-5081.	1.7	144
80	Regulation of pain by neuro-immune interactions between macrophages and nociceptor sensory neurons. Current Opinion in Neurobiology, 2020, 62, 17-25.	2.0	144
81	TLR3 deficiency impairs spinal cord synaptic transmission, central sensitization, and pruritus in mice. Journal of Clinical Investigation, 2012, 122, 2195-2207.	3.9	143
82	Sex-Dependent Glial Signaling in Pathological Pain: Distinct Roles of Spinal Microglia and Astrocytes. Neuroscience Bulletin, 2018, 34, 98-108.	1.5	140
83	The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain, 2010, 148, 309-319.	2.0	139
84	Central Nervous System Targets: Glial Cell Mechanisms in Chronic Pain. Neurotherapeutics, 2020, 17, 846-860.	2.1	138
85	Activation of JNK pathway in persistent pain. Neuroscience Letters, 2008, 437, 180-183.	1.0	135
86	Bradykinin Produces Pain Hypersensitivity by Potentiating Spinal Cord Glutamatergic Synaptic Transmission. Journal of Neuroscience, 2005, 25, 7986-7992.	1.7	130
87	Nerve Conduction Blockade in the Sciatic Nerve Prevents but Does Not Reverse the Activation of p38 Mitogen-activated Protein Kinase in Spinal Microglia in the Rat Spared Nerve Injury Model. Anesthesiology, 2007, 107, 312-321.	1.3	127
88	Peripheral noxious stimulation induces phosphorylation of the NMDA receptor NR1 subunit at the PKC-dependent site, serine-896, in spinal cord dorsal horn neurons. European Journal of Neuroscience, 2004, 20, 375-384.	1.2	125
89	Nociceptive neurons regulate innate and adaptive immunity and neuropathic pain through MyD88 adapter. Cell Research, 2014, 24, 1374-1377.	5.7	125
90	Activation of p38 Mitogen-activated Protein Kinase in Spinal Microglia Contributes to Incision-induced Mechanical Allodynia. Anesthesiology, 2009, 110, 155-165.	1.3	124

#	Article	IF	CITATIONS
91	SHANK3 Deficiency Impairs Heat Hyperalgesia and TRPV1 Signaling in Primary Sensory Neurons. Neuron, 2016, 92, 1279-1293.	3.8	119
92	Activation of Extracellular Signal-Regulated Kinase in the Anterior Cingulate Cortex Contributes to the Induction and Expression of Affective Pain. Journal of Neuroscience, 2009, 29, 3307-3321.	1.7	115
93	Toll-like receptor 4 contributes to chronic itch, alloknesis, and spinal astrocyte activation in male mice. Pain, 2016, 157, 806-817.	2.0	114
94	Peripheral and Central Mechanisms of Inflammatory Pain, with Emphasis on MAP Kinases. Inflammation and Allergy: Drug Targets, 2004, 3, 299-303.	3.1	113
95	Transition to chronic pain: opportunities for novel therapeutics. Nature Reviews Neuroscience, 2018, 19, 383-384.	4.9	113
96	Central and peripheral expression of galanin in response to inflammation. Neuroscience, 1995, 68, 563-576.	1.1	112
97	The pattern of expression of the voltage-gated sodium channels Nav1.8 and Nav1.9 does not change in uninjured primary sensory neurons in experimental neuropathic pain models. Pain, 2002, 96, 269-277.	2.0	112
98	TRAF6 upregulation in spinal astrocytes maintains neuropathic pain by integrating TNF-1 \pm and IL-11² signaling. Pain, 2014, 155, 2618-2629.	2.0	111
99	Expression of pituitary adenylate cyclase-activating polypeptide in dorsal root ganglia following axotomy: time course and coexistence. Brain Research, 1995, 705, 149-158.	1.1	110
100	Chemokine CXCL1 enhances inflammatory pain and increases NMDA receptor activity and COX-2 expression in spinal cord neurons via activation of CXCR2. Experimental Neurology, 2014, 261, 328-336.	2.0	109
101	Lipoxin A4 inhibits microglial activation and reduces neuroinflammation and neuropathic pain after spinal cord hemisection. Journal of Neuroinflammation, 2016, 13, 75.	3.1	109
102	Neuroinflammation, Bone Marrow Stem Cells, and Chronic Pain. Frontiers in Immunology, 2017, 8, 1014.	2.2	109
103	Upregulation of the Voltage-Gated Sodium Channel Â2 Subunit in Neuropathic Pain Models: Characterization of Expression in Injured and Non-Injured Primary Sensory Neurons. Journal of Neuroscience, 2005, 25, 10970-10980.	1.7	108
104	STING controls nociception via type I interferon signalling in sensory neurons. Nature, 2021, 591, 275-280.	13.7	107
105	Resolvin E1 Inhibits Neuropathic Pain and Spinal Cord Microglial Activation Following Peripheral Nerve Injury. Journal of NeuroImmune Pharmacology, 2013, 8, 37-41.	2.1	106
106	Neuropathic Pain Is Constitutively Suppressed in Early Life by Anti-Inflammatory Neuroimmune Regulation. Journal of Neuroscience, 2015, 35, 457-466.	1.7	104
107	5,6-EET Is Released upon Neuronal Activity and Induces Mechanical Pain Hypersensitivity via TRPA1 on Central Afferent Terminals. Journal of Neuroscience, 2012, 32, 6364-6372.	1.7	103
108	Spinal injection of TNFâ€Î±â€activated astrocytes produces persistent pain symptom mechanical allodynia by releasing monocyte chemoattractant proteinâ€1. Glia, 2010, 58, 1871-1880.	2.5	102

#	Article	IF	CITATIONS
109	Neuroprotectin/protectin D1 protects against neuropathic pain in mice after nerve trauma. Annals of Neurology, 2013, 74, 490-495.	2.8	102
110	Induction of CB1 cannabinoid receptor by inflammation in primary afferent neurons facilitates antihyperalgesic effect of peripheral CB1 agonist. Pain, 2006, 124, 175-183.	2.0	101
111	DRAGON: A Member of the Repulsive Guidance Molecule-Related Family of Neuronal- and Muscle-Expressed Membrane Proteins Is Regulated by DRG11 and Has Neuronal Adhesive Properties. Journal of Neuroscience, 2004, 24, 2027-2036.	1.7	99
112	Bradykinin Enhances AMPA and NMDA Receptor Activity in Spinal Cord Dorsal Horn Neurons by Activating Multiple Kinases to Produce Pain Hypersensitivity. Journal of Neuroscience, 2008, 28, 4533-4540.	1.7	99
113	Transcriptional and functional profiles of voltage-gated Na+ channels in injured and non-injured DRG neurons in the SNI model of neuropathic pain. Molecular and Cellular Neurosciences, 2008, 37, 196-208.	1.0	98
114	Expression and Role of Voltage-Gated Sodium Channels in Human Dorsal Root Ganglion Neurons with Special Focus on Nav1.7, Species Differences, and Regulation by Paclitaxel. Neuroscience Bulletin, 2018, 34, 4-12.	1.5	97
115	Oxidative stress induces itch via activation of transient receptor potential subtype ankyrin 1 in mice. Neuroscience Bulletin, 2012, 28, 145-154.	1.5	95
116	TLR signaling adaptor protein MyD88 in primary sensory neurons contributes to persistent inflammatory and neuropathic pain and neuroinflammation. Scientific Reports, 2016, 6, 28188.	1.6	94
117	Macrophage Toll-like Receptor 9 Contributes to Chemotherapy-Induced Neuropathic Pain in Male Mice. Journal of Neuroscience, 2019, 39, 6848-6864.	1.7	93
118	IL-23/IL-17A/TRPV1 axis produces mechanical pain via macrophage-sensory neuron crosstalk in female mice. Neuron, 2021, 109, 2691-2706.e5.	3.8	93
119	Large A-Fiber Activity is Required for Microglial Proliferation and P38 MAPK Activation in the Spinal Cord: Different Effects of Resiniferatoxin and Bupivacaine on Spinal Microglial Changes after Spared Nerve Injury. Molecular Pain, 2009, 5, 1744-8069-5-53.	1.0	91
120	PD-1 blockade inhibits osteoclast formation and murine bone cancer pain. Journal of Clinical Investigation, 2020, 130, 3603-3620.	3.9	90
121	How Do Sensory Neurons Sense Danger Signals?. Trends in Neurosciences, 2020, 43, 822-838.	4.2	85
122	Structural Insights into Electrophile Irritant Sensing by the Human TRPA1 Channel. Neuron, 2020, 105, 882-894.e5.	3.8	81
123	Targeting CYP2J to reduce paclitaxel-induced peripheral neuropathic pain. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12544-12549.	3.3	79
124	miRNA-711 Binds and Activates TRPA1 Extracellularly to Evoke Acute and Chronic Pruritus. Neuron, 2018, 99, 449-463.e6.	3.8	79
125	Acute Morphine Activates Satellite Glial Cells and Up-Regulates IL-1β in Dorsal Root Ganglia in Mice via Matrix Metalloprotease-9. Molecular Pain, 2012, 8, 1744-8069-8-18.	1.0	77
126	Neuropeptide Y and Galanin Binding Sites in Rat and Monkev Lumbar Dorsal Root Ganalia and Spinal Cord and Effect of Peripheral Axotomy. European Journal of Neuroscience, 1995, 7, 367-380.	1.2	72

#	Article	IF	CITATIONS
127	Protein Kinases as Potential Targets for the Treatment of Pathological Pain. , 2007, , 359-389.		72
128	Resolvin D5 Inhibits Neuropathic and Inflammatory Pain in Male But Not Female Mice: Distinct Actions of D-Series Resolvins in Chemotherapy-Induced Peripheral Neuropathy. Frontiers in Pharmacology, 2019, 10, 745.	1.6	71
129	Loss of NR1 Subunit of NMDARs in Primary Sensory Neurons Leads to Hyperexcitability and Pain Hypersensitivity: Involvement of Ca ²⁺ -Activated Small Conductance Potassium Channels. Journal of Neuroscience, 2013, 33, 13425-13430.	1.7	70
130	Periostin Activation of Integrin Receptors on Sensory Neurons Induces Allergic Itch. Cell Reports, 2020, 31, 107472.	2.9	69
131	Distinct Analgesic Actions of DHA and DHA-Derived Specialized Pro-Resolving Mediators on Post-operative Pain After Bone Fracture in Mice. Frontiers in Pharmacology, 2018, 9, 412.	1.6	68
132	Galanin antisense oligonucleotides reduce galanin levels in dorsal root ganglia and induce autotomy in rats after axotomy Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12540-12543.	3.3	66
133	Mitogen-activated protein kinases as potential targets for pain killers. Current Opinion in Investigational Drugs, 2004, 5, 71-5.	2.3	63
134	Expression of peptides, nitric oxide synthase and NPY receptor in trigeminal and nodose ganglia after nerve lesions. Experimental Brain Research, 1996, 111, 393-404.	0.7	62
135	Gene Expression Profiling of Cutaneous Injured and Non-Injured Nociceptors in SNI Animal Model of Neuropathic Pain. Scientific Reports, 2017, 7, 9367.	1.6	62
136	Neuroimmune interactions in itch: Do chronic itch, chronic pain, and chronic cough share similar mechanisms?. Pulmonary Pharmacology and Therapeutics, 2015, 35, 81-86.	1.1	60
137	Spinal CCL2 Promotes Central Sensitization, Long-Term Potentiation, and Inflammatory Pain via CCR2: Further Insights into Molecular, Synaptic, and Cellular Mechanisms. Neuroscience Bulletin, 2018, 34, 13-21.	1.5	60
138	Specific Agrin Isoforms Induce cAMP Response Element Binding Protein Phosphorylation in Hippocampal Neurons. Journal of Neuroscience, 1998, 18, 9695-9702.	1.7	59
139	Microglial Signaling in Chronic Pain with a Special Focus on Caspase 6, p38 MAP Kinase, and Sex Dependence. Journal of Dental Research, 2016, 95, 1124-1131.	2.5	59
140	Prominent Expression of bFGF in Dorsal Root Ganglia after Axotomy. European Journal of Neuroscience, 1995, 7, 2458-2468.	1.2	58
141	Selective inhibition of JNK with a peptide inhibitor attenuates pain hypersensitivity and tumor growth in a mouse skin cancer pain model. Experimental Neurology, 2009, 219, 146-155.	2.0	58
142	Epithelia-Sensory Neuron Cross Talk Underlies Cholestatic Itch Induced by Lysophosphatidylcholine. Gastroenterology, 2021, 161, 301-317.e16.	0.6	57
143	Organization of Intralaminar and Translaminar Neuronal Connectivity in the Superficial Spinal Dorsal Horn. Journal of Neuroscience, 2009, 29, 5088-5099.	1.7	56
144	Light touch induces ERK activation in superficial dorsal horn neurons after inflammation: involvement of spinal astrocytes and JNK signaling in touchâ€evoked central sensitization and mechanical allodynia. Journal of Neurochemistry, 2010, 115, 505-514.	2.1	56

#	Article	IF	CITATIONS
145	Anti–PD-1 treatment impairs opioid antinociception in rodents and nonhuman primates. Science Translational Medicine, 2020, 12, .	5.8	54
146	Is endogenous d-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect?. Journal of Neurochemistry, 2006, 96, 1636-1647.	2.1	53
147	Deficiency of Shank2 causes mania-like behavior that responds to mood stabilizers. JCI Insight, 2017, 2, .	2.3	53
148	Intrathecal administration of antisense oligonucleotide against p38α but not p38β MAP kinase isoform reduces neuropathic and postoperative pain and TLR4-induced pain in male mice. Brain, Behavior, and Immunity, 2018, 72, 34-44.	2.0	52
149	HepaCAM controls astrocyte self-organization and coupling. Neuron, 2021, 109, 2427-2442.e10.	3.8	52
150	Interferon alpha inhibits spinal cord synaptic and nociceptive transmission via neuronal-glial interactions. Scientific Reports, 2016, 6, 34356.	1.6	50
151	STING suppresses bone cancer pain via immune and neuronal modulation. Nature Communications, 2021, 12, 4558.	5.8	50
152	Resolvins are potent analgesics for arthritic pain. British Journal of Pharmacology, 2011, 164, 274-277.	2.7	49
153	β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nature Communications, 2016, 7, 12531.	5.8	49
154	Transcriptional Profiling of Somatostatin Interneurons in the Spinal Dorsal Horn. Scientific Reports, 2018, 8, 6809.	1.6	48
155	Tissue plasminogen activator contributes to morphine tolerance and induces mechanical allodynia via astrocytic IL-1β and ERK signaling in the spinal cord of mice. Neuroscience, 2013, 247, 376-385.	1.1	45
156	Activation of GPR37 in macrophages confers protection against infection-induced sepsis and pain-like behaviour in mice. Nature Communications, 2021, 12, 1704.	5.8	45
157	Central opioid receptors mediate morphine-induced itch and chronic itch via disinhibition. Brain, 2021, 144, 665-681.	3.7	45
158	TNF-α/TNFR1 Signaling is Required for the Full Expression of Acute and Chronic Itch in Mice via Peripheral and Central Mechanisms. Neuroscience Bulletin, 2018, 34, 42-53.	1.5	44
159	Effect of growth factors on substance P mRNA expression in axotomized dorsal root ganglia. NeuroReport, 1995, 6, 1309-1312.	0.6	43
160	aFGF, bFGF and NGF differentially regulate neuropeptide expression in dorsal root ganglia after axotomy and induce autotomy. Regulatory Peptides, 1996, 66, 179-189.	1.9	41
161	Effects of Bupivacaine and Tetrodotoxin on Carrageenan-induced Hind Paw Inflammation in Rats (Part) Tj ETQq1	1 0.7843 1.3	14_rgBT /Ove
162	Increased Expression of Galanin in the Rat Superior Cervical Ganglion after Pre- and Postganglionic Nerve Lesions. Experimental Neurology, 1994, 127, 9-22.	2.0	37

#	Article	IF	CITATIONS
163	Different Effects of Opioid and Cannabinoid Receptor Agonists on C-Fiber-Induced Extracellular Signal-Regulated Kinase Activation in Dorsal Horn Neurons in Normal and Spinal Nerve-Ligated Rats. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 601-607.	1.3	37
164	Treating triple-negative breast cancer by a combination of rapamycin and cyclophosphamide: An in vivo bioluminescence imaging study. European Journal of Cancer, 2010, 46, 1132-1143.	1.3	37
165	Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control. Journal of Neurophysiology, 2015, 114, 284-300.	0.9	36
166	Interferons in Pain and Infections: Emerging Roles in Neuro-Immune and Neuro-Glial Interactions. Frontiers in Immunology, 2021, 12, 783725.	2.2	36
167	Neuromodulation, Specialized Proresolving Mediators, and Resolution of Pain. Neurotherapeutics, 2020, 17, 886-899.	2.1	34
168	Dectin-1 limits autoimmune neuroinflammation and promotes myeloid cell-astrocyte crosstalk via Card9-independent expression of Oncostatin M. Immunity, 2021, 54, 484-498.e8.	6.6	34
169	Contribution of Baroreceptor Function to Pain Perception and Perioperative Outcomes. Anesthesiology, 2019, 130, 634-650.	1.3	33
170	Acute Morphine Induces Matrix Metalloproteinase-9 Up-Regulation in Primary Sensory Neurons to Mask Opioid-Induced Analgesia in Mice. Molecular Pain, 2012, 8, 1744-8069-8-19.	1.0	31
171	Degradable polymeric vehicles for postoperative pain management. Nature Communications, 2021, 12, 1367.	5.8	30
172	Emerging Role of PD-1 in the Central Nervous System and Brain Diseases. Neuroscience Bulletin, 2021, 37, 1188-1202.	1.5	30
173	Functional selection of protease inhibitory antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 16314-16319.	3.3	29
174	The role of Na _v 1.7 and methylglyoxal-mediated activation of TRPA1 in itch and hypoalgesia in a murine model of type 1 diabetes. Theranostics, 2019, 9, 4287-4307.	4.6	29
175	Is Optogenetic Activation of Vglut1-Positive AÎ ² Low-Threshold Mechanoreceptors Sufficient to Induce Tactile Allodynia in Mice after Nerve Injury?. Journal of Neuroscience, 2019, 39, 6202-6215.	1.7	28
176	Lysophospholipids Contribute to Oxaliplatin-Induced Acute Peripheral Pain. Journal of Neuroscience, 2020, 40, 9519-9532.	1.7	28
177	Neuroimmune modulation of pain and regenerative pain medicine. Journal of Clinical Investigation, 2020, 130, 2164-2176.	3.9	27
178	Differential wiring of local excitatory and inhibitory synaptic inputs to islet cells in rat spinal lamina Il demonstrated by laser scanning photostimulation. Journal of Physiology, 2007, 580, 815-833.	1.3	26
179	Development of a Membrane-anchored Chemerin Receptor Agonist as a Novel Modulator of Allergic Airway Inflammation and Neuropathic Pain. Journal of Biological Chemistry, 2014, 289, 13385-13396.	1.6	24
180	PD-1 Regulates GABAergic Neurotransmission and GABA-Mediated Analgesia and Anesthesia. IScience, 2020, 23, 101570.	1.9	23

#	Article	IF	CITATIONS
181	Cancer-specific type-I interferon receptor signaling promotes cancer stemness and effector CD8+ T-cell exhaustion. Oncolmmunology, 2021, 10, 1997385.	2.1	23
182	Differential Inhibition of Nav1.7 and Neuropathic Pain by Hybridoma-Produced and Recombinant Monoclonal Antibodies that Target Nav1.7. Neuroscience Bulletin, 2018, 34, 22-41.	1.5	22
183	Recent Progress in Understanding the Mechanisms of Pain and Itch: the Second Special Issue. Neuroscience Bulletin, 2018, 34, 1-3.	1.5	21
184	Use of Bulleyaconitine A as an Adjuvant for Prolonged Cutaneous Analgesia in the Rat. Anesthesia and Analgesia, 2008, 107, 1397-1405.	1.1	20
185	Targeting microglial purinergic signaling to improve morphine analgesia. Pain, 2010, 150, 377-378.	2.0	20
186	Itch Control by Toll-Like Receptors. Handbook of Experimental Pharmacology, 2015, 226, 135-150.	0.9	20
187	Effect of administration of high dose intrathecal clonidine or morphine prior to sciatic nerve section on c-Fos expression in rat lumbar spinal cord. Neuroscience, 1995, 68, 1219-1227.	1.1	19
188	Therapeutic Potential of RNA Interference in Pain Medicine. Open Pain Journal, 2009, 2, 57-63.	0.4	19
189	Spinal Cord Stimulation Attenuates Mechanical Allodynia and Increases Central Resolvin D1 Levels in Rats With Spared Nerve Injury. Frontiers in Physiology, 2021, 12, 687046.	1.3	19
190	Reciprocal interactions between osteoclasts and nociceptive sensory neurons in bone cancer pain. Pain Reports, 2021, 6, e867.	1.4	19
191	The Qualitative Hyperalgesia Profile: A New Metric to Assess Chronic Post-Thoracotomy Pain. Open Pain Journal, 2013, 6, 190-198.	0.4	17
192	Computer-aided Discovery of a New Nav1.7 Inhibitor for Treatment of Pain and Itch. Anesthesiology, 2020, 133, 611-627.	1.3	16
193	Repurposing cancer drugs identifies kenpaullone which ameliorates pathologic pain in preclinical models via normalization of inhibitory neurotransmission. Nature Communications, 2021, 12, 6208.	5.8	16
194	Ca2+/calmodulin-dependent protein kinase type IV in dorsal root ganglion: colocalization with peptides, axonal transport and effect of axotomy. Brain Research, 1996, 721, 167-173.	1.1	15
195	Short small-interfering RNAs produce interferon-α-mediated analgesia. British Journal of Anaesthesia, 2012, 108, 662-669.	1.5	15
196	The effect of intrathecal neuropeptide Y on the flexor reflex in rats after carrageenan-induced inflammation. Neuropeptides, 1998, 32, 447-452.	0.9	14
197	Induction of C-Fos Expression in the Rostral Medulla of Rats Following Electroacupuncture Stimulation. International Journal of Neuroscience, 1993, 72, 183-191.	0.8	13
198	Molecular Sensors of Temperature, Pressure, and Pain with Special Focus on TRPV1, TRPM8, and PIEZO2 Ion Channels. Neuroscience Bulletin, 2021, 37, 1745-1749.	1.5	12

#	Article	IF	CITATIONS
199	IL-23 Enhances C-Fiber-Mediated and Blue Light-Induced Spontaneous Pain in Female Mice. Frontiers in Immunology, 2021, 12, 787565.	2.2	10
200	Perioperative Nerve Blockade: Clues from the Bench. Anesthesiology Research and Practice, 2011, 2011, 1-12.	0.2	9
201	Controlled release of etoricoxib from poly(ester urea) films for post-operative pain management. Journal of Controlled Release, 2021, 329, 316-327.	4.8	9
202	A new synthetic protectin D1 analog 3-oxa-PD1 _{n-3 DPA} reduces neuropathic pain and chronic itch in mice. Organic and Biomolecular Chemistry, 2021, 19, 2744-2752.	1.5	9
203	Skin Injury Activates a Rapid TRPV1-Dependent Antiviral Protein Response. Journal of Investigative Dermatology, 2022, 142, 2249-2259.e9.	0.3	8
204	A Role for Protease Activated Receptor Type 3 (PAR3) in Nociception Demonstrated Through Development of a Novel Peptide Agonist. Journal of Pain, 2021, 22, 692-706.	0.7	7
205	Recent progress in understanding the mechanisms of pain and itch. Neuroscience Bulletin, 2012, 28, 89-90.	1.5	6
206	Stabilization of μâ€opioid receptor facilitates its cellular translocation and signaling. Proteins: Structure, Function and Bioinformatics, 2019, 87, 878-884.	1.5	6
207	Neural-glial interaction in the spinal cord for the development and maintenance of nerve injury-induced neuropathic pain. Drug Development Research, 2006, 67, 331-338.	1.4	5
208	Dietary control of chronic headache: Involvement of pro-resolution lipid mediators. Pain, 2013, 154, 2247-2248.	2.0	5
209	Effects of Capsaicin on Fos Expression Evoked by Formalin and Electroacupuncture Stimulation in the Rat Spinal Cord. Pain Research, 1994, 9, 37-47.	0.1	5
210	Scratching after Stroking and Poking: A Spinal Circuit Underlying Mechanical Itch. Neuron, 2019, 103, 952-954.	3.8	4
211	Identification and characterization of novel candidate compounds targeting 6―and 7â€transmembrane μâ€opioid receptor isoforms. British Journal of Pharmacology, 2021, 178, 2709-2726.	2.7	4
212	Third Special Issue on Mechanisms of Pain and Itch. Neuroscience Bulletin, 2022, 38, 339-341.	1.5	4
213	Is endogenous d-serine in the rostral anterior cingulate cortex necessary for pain-related negative affect?. Journal of Neurochemistry, 2006, 98, 1344-1344.	2.1	2
214	Dorsal root ganglia pulsed radiofrequency treatment alters the spinal immune environment. Brain, Behavior, and Immunity, 2018, 70, 6-7.	2.0	2
215	Can a Western high-fat diet lead to painful neuropathy?. Nature Metabolism, 2021, 3, 735-736.	5.1	2

#	Article	IF	CITATIONS
217	Targeting Hv1 proton channel for pain control. Cell Research, 2022, 32, 419-420.	5.7	2
218	A new optogenetic device for spinal cord control of pain. Pain, 2017, 158, 2059-2060.	2.0	1
219	MAP Kinase and Cell Signaling in DRG Neurons and Spinal Microglia in Neuropathic Pain. , 2009, , 425-438.		0