Wieslaw Swietnicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871588/publications.pdf

Version: 2024-02-01

361413 434195 33 2,396 20 31 citations h-index g-index papers 33 33 33 2164 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dihydrolipoamide Acetyltransferase AceF Influences the Type III Secretion System and Resistance to Oxidative Stresses through RsmY/Z in Pseudomonas aeruginosa. Microorganisms, 2022, 10, 666.	3.6	4
2	Prediction of Selected Biosynthetic Pathways for the Lipopolysaccharide Components in Porphyromonas gingivalis. Pathogens, 2021, 10, 374.	2.8	1
3	Metallacarborane Derivatives Effective against Pseudomonas aeruginosa and Yersinia enterocolitica. International Journal of Molecular Sciences, 2021, 22, 6762.	4.1	17
4	Secretory System Components as Potential Prophylactic Targets for Bacterial Pathogens. Biomolecules, 2021, 11, 892.	4.0	1
5	Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas–Aspergillus Interplay, for the Mycology Community. Journal of Fungi (Basel, Switzerland), 2020, 6, 81.	3.5	32
6	In silico analysis of bacteriophage tail tubular proteins suggests a putative sugar binding site and a catalytic mechanism. Journal of Molecular Graphics and Modelling, 2019, 92, 8-16.	2.4	2
7	Identification of a potent inhibitor of type II secretion system from Pseudomonas aeruginosa. Biochemical and Biophysical Research Communications, 2019, 513, 688-693.	2.1	11
8	Identification of small molecule compounds active against Staphylococcus aureus and Proteus mirabilis. Biochemical and Biophysical Research Communications, 2018, 506, 1047-1051.	2.1	3
9	Design of small molecule inhibitors of type III secretion system ATPase EscN from enteropathogenic Escherichia coli Acta Biochimica Polonica, 2017, 64, 49-63.	0.5	16
10	Vitamin D analogs combined with 5-fluorouracil in human HT-29 colon cancer treatment. Oncology Reports, 2014, 32, 491-504.	2.6	41
11	Thermodynamic Stabilization of the Folded Domain of Prion Protein Inhibits Prion Infection inÂVivo. Cell Reports, 2013, 4, 248-254.	6.4	28
12	KBTBD13 interacts with Cullin 3 to form a functional ubiquitin ligase. Biochemical and Biophysical Research Communications, 2012, 421, 743-749.	2.1	34
13	A Yersinia pestisYscN ATPase mutant functions as a live attenuated vaccine against bubonic plague in mice. FEMS Microbiology Letters, 2012, 332, 113-121.	1.8	23
14	Identification of Small-Molecule Inhibitors of Yersinia pestis Type III Secretion System YscN ATPase. PLoS ONE, 2011, 6, e19716.	2.5	64
15	Yersinia pestis YopD 150–287 fragment is partially unfolded in the native state. Protein Expression and Purification, 2008, 58, 53-60.	1.3	7
16	Model systems to study a superantigen-induced disease: Toxic shock syndrome. Drug Discovery Today: Disease Models, 2006, 3, 121-126.	1.2	0
17	Folding aggregated proteins into functionally active forms. Current Opinion in Biotechnology, 2006, 17, 367-372.	6.6	50
18	Yersinia pestis Yop secretion protein F: Purification, characterization, and protective efficacy against bubonic plague. Protein Expression and Purification, 2005, 42, 166-172.	1.3	34

#	Article	IF	CITATIONS
19	Novel Protein-Protein Interactions of the Yersinia pestis Type III Secretion System Elucidated with a Matrix Analysis by Surface Plasmon Resonance and Mass Spectrometry. Journal of Biological Chemistry, 2004, 279, 38693-38700.	3.4	32
20	Zinc Binding and Dimerization of Streptococcus pyogenes Pyrogenic Exotoxin C Are Not Essential for T-cell Stimulation. Journal of Biological Chemistry, 2003, 278, 9885-9895.	3.4	20
21	PrPC has nucleic acid chaperoning properties similar to the nucleocapsid protein of HIV-1. Comptes Rendus - Biologies, 2002, 325, 17-23.	0.2	29
22	The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein 1 1Edited by J. Karn. Journal of Molecular Biology, 2001, 307, 1011-1021.	4.2	118
23	Crystal structure of the human prion protein reveals a mechanism for oligomerization. Nature Structural Biology, 2001, 8, 770-774.	9.7	474
24	The Prion Protein Has RNA Binding and Chaperoning Properties Characteristic of Nucleocapsid Protein NCp7 of HIV-1. Journal of Biological Chemistry, 2001, 276, 19301-19309.	3.4	163
25	Solution Structure of the E200K Variant of Human Prion Protein. Journal of Biological Chemistry, 2000, 275, 33650-33654.	3.4	120
26	Identification of an epitope in the C terminus of normal prion protein whose expression is modulated by binding events in the N terminus 1 1Edited by F. Cohen. Journal of Molecular Biology, 2000, 301, 567-573.	4.2	110
27	Aggregation and Fibrillization of the Recombinant Human Prion Protein huPrP90â^231. Biochemistry, 2000, 39, 424-431.	2.5	216
28	Membrane Environment Alters the Conformational Structure of the Recombinant Human Prion Protein. Journal of Biological Chemistry, 1999, 274, 36859-36865.	3.4	230
29	Familial Mutations and the Thermodynamic Stability of the Recombinant Human Prion Protein. Journal of Biological Chemistry, 1998, 273, 31048-31052.	3.4	176
30	pH-dependent Stability and Conformation of the Recombinant Human Prion Protein PrP(90–231). Journal of Biological Chemistry, 1997, 272, 27517-27520.	3.4	239
31	Fv structure of monoclonal antibody II-481 against herpes simplex virus Fc gamma-binding glycoprotein gE contains immunodominant complementarity determining region epitopes that react with human immunoglobulin M rheumatoid factors Journal of Experimental Medicine, 1994, 180, 1873-1888.	8.5	5
32	Analysis of Proteinase Specificity by Studies of Peptide Substrates: The Use of UV and Fluorescence Spectroscopy to Quantitate Rates of Enzymatic Cleavage., 1994, 36, 225-244.		21
33	Hepatitis A virus 3C proteinase substrate specificity. Biochemistry, 1992, 31, 7862-7869.	2.5	7 5