Baogang Quan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6871025/publications.pdf

Version: 2024-02-01

64 2,140 24
papers citations h-index

24 45
h-index g-index

66 66 all docs citations

66 times ranked 3698 citing authors

#	Article	IF	CITATIONS
1	Highâ€Efficiency Phase and Polarization Modulation Metasurfaces. Advanced Photonics Research, 2022, 3, .	3.6	4
2	Flexible THz Carrierâ€Envelope Phase Shifter Based on Metamaterials. Advanced Optical Materials, 2022, 10, .	7.3	4
3	Nonlinear THzâ€Nano Metasurfaces. Advanced Functional Materials, 2021, 31, 2100463.	14.9	31
4	Electromechanically reconfigurable optical nano-kirigami. Nature Communications, 2021, 12, 1299.	12.8	61
5	Silicon micropillar electrodes of lithiumion batteries used for characterizing electrolyte additives*. Chinese Physics B, 2021, 30, 068202.	1.4	1
6	Electrically Triggered VO ₂ Reconfigurable Metasurface for Amplitude and Phase Modulation of Terahertz Wave. Journal of Lightwave Technology, 2021, 39, 3488-3494.	4.6	34
7	Nonlinear THzâ€Nano Metasurfaces: Nonlinear THzâ€Nano Metasurfaces (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170170.	14.9	3
8	Temperature and velocity dependent friction of a microscale graphite-DLC heterostructure. Friction, 2020, 8, 462-470.	6.4	27
9	Artificial modulation of cell width significantly affects the division time of Escherichia coli. Scientific Reports, 2020, 10, 17847.	3.3	4
10	Characterization of a Microscale Superlubric Graphite Interface. Physical Review Letters, 2020, 125, 026101.	7.8	25
11	HapBead: On-Skin Microfluidic Haptic Interface using Tunable Bead. , 2020, , .		12
12	In-situ visualization of lithium plating in all-solid-state lithium-metal battery. Nano Energy, 2019, 63, 103895.	16.0	109
13	Circular-Photon-Drag-Effect-Induced Elliptically Polarized Terahertz Emission from Vertically Grown Graphene. Physical Review Applied, 2019, 12, .	3.8	19
14	Broadband and Polarization-Insensitive Absorption Based on a Set of Multisized Fabry–Perot-like Resonators. Journal of Physical Chemistry C, 2019, 123, 13856-13862.	3.1	24
15	Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation. Journal of Materials Chemistry A, 2019, 7, 15113-15122.	10.3	41
16	Direct Experimental Evidence of Biomimetic Surfaces with Chemical Modifications Interfering with Adhesive Protein Adsorption. Molecules, 2019, 24, 27.	3.8	13
17	Polarization multiplexing for double images display. Opto-Electronic Advances, 2019, 2, 18002901-18002906.	13.3	56
18	Strong-field Terahertz Induced Nonlinear Frequency Switching. , 2019, , .		0

#	Article	IF	CITATIONS
19	Transport properties of ultrathin BaFe _{1.84} Co _{0.16} As ₂ superconducting nanowires. Superconductor Science and Technology, 2018, 31, 025002.	3.5	6
20	Electro-plating and stripping behavior on lithium metal electrode with ordered three-dimensional structure. Nano Energy, 2018, 45, 463-470.	16.0	81
21	Nanocracking and metallization doubly defined large-scale 3D plasmonic sub-10 nm-gap arrays as extremely sensitive SERS substrates. Nanoscale, 2018, 10, 3171-3180.	5.6	38
22	Demonstration of Orbital Angular Momentum Multiplexing and Demultiplexing Based on a Metasurface in the Terahertz Band. ACS Photonics, 2018, 5, 1726-1732.	6.6	111
23	Towards Ultra-strong Terahertz Field Enhancement in Nanogap Split Ring Resonators. , 2018, , .		1
24	High-resolution CW Terahertz Spectroscopy of Nanogap Terahertz Metamaterials. , 2018, , .		0
25	Large-scale Ag-nanoparticles/Al2O3/Au-nanograting hybrid nanostructure for surface-enhanced Raman scattering. Microelectronic Engineering, 2017, 172, 1-7.	2.4	14
26	Rapidly fabricating large-scale plasmonic silver nanosphere arrays with sub-20Ânm gap on Si-pyramids by inverted annealing for highly sensitive SERS detection. RSC Advances, 2017, 7, 11578-11584.	3.6	9
27	Vertical few-layer graphene/metalized Si-nanocone arrays as 3D electrodes for solid-state supercapacitors with large areal capacitance and superior rate capability. Applied Surface Science, 2017, 404, 238-245.	6.1	23
28	Ultrafast carrier transfer evidencing graphene electromagnetically enhanced ultrasensitive SERS in graphene/Ag-nanoparticles hybrid. Carbon, 2017, 122, 98-105.	10.3	40
29	Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity. Sensors and Actuators A: Physical, 2017, 259, 121-126.	4.1	30
30	A Well-Defined Silicon Nanocone–Carbon Structure for Demonstrating Exclusive Influences of Carbon Coating on Silicon Anode of Lithium-Ion Batteries. ACS Applied Materials & Literfaces, 2017, 9, 2806-2814.	8.0	29
31	Side-by-side observation of the interfacial improvement of vertical graphene-coated silicon nanocone anodes for lithium-ion batteries by patterning technology. Nanoscale, 2017, 9, 17241-17247.	5.6	14
32	Ultrafast terahertz response in photoexcited, vertically grown few-layer graphene. Applied Physics Letters, 2016, 108, .	3.3	13
33	Wavelength de-multiplexing metasurface hologram. Scientific Reports, 2016, 6, 35657.	3.3	41
34	Fabrication of inverted pyramidal pits with Nano-opening by laser interference lithography and wet etching. Microelectronic Engineering, 2016, 163, 110-114.	2.4	6
35	Controlled fabrication of periodically high-aspect ratio CVD-diamond nanopillar arrays by pure oxygen etching process. Microelectronic Engineering, 2016, 155, 61-66.	2.4	14
36	Tunable surface-plasmon-polariton-like modes based on graphene metamaterials in terahertz region. Computational Materials Science, 2016, 117, 544-548.	3.0	10

#	Article	IF	CITATIONS
37	Three Dimensional Hybrids of Vertical Graphene-nanosheet Sandwiched by Ag-nanoparticles for Enhanced Surface Selectively Catalytic Reactions. Scientific Reports, 2015, 5, 16019.	3.3	59
38	Low-temperature electrical transport in B-doped ultrananocrystalline diamond film. Applied Physics Letters, 2014, 104, 182602.	3. 3	2
39	Plasmonic Coupling: Wafer-Scale Double-Layer Stacked Au/Al2O3@Au Nanosphere Structure with Tunable Nanospacing for Surface-Enhanced Raman Scattering (Small 19/2014). Small, 2014, 10, 3932-3932.	10.0	2
40	Rapid templated fabrication of large-scale, high-density metallic nanocone arrays and SERS applications. Journal of Materials Chemistry C, 2014, 2, 9987-9992.	5.5	12
41	Waferâ€Scale Doubleâ€Layer Stacked Au/Al ₂ O ₃ @Au Nanosphere Structure with Tunable Nanospacing for Surfaceâ€Enhanced Raman Scattering. Small, 2014, 10, 3933-3942.	10.0	33
42	Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions. Optics Communications, 2014, 332, 321-326.	2.1	26
43	Graphene–metamaterial hybridization for enhanced terahertz response. Carbon, 2014, 78, 102-112.	10.3	47
44	Morphology Modulating the Wettability of a Diamond Film. Langmuir, 2014, 30, 12647-12653.	3.5	22
45	Prospects Application of Polypyrrole-Based Immunosensor to Porphyromonas Gingivalis Quantification in Subgingival Plaque Samples. Clinical Laboratory, 2014, 60, 525-32.	0.5	0
46	Optical modulation of terahertz behavior in silicon with structured surfaces. Applied Physics Letters, 2013, 103, .	3.3	22
47	Effect of inhomogeneity and plasmons on terahertz radiation from GaAs (100) surface coated with rough Au film. Applied Surface Science, 2013, 285, 853-857.	6.1	21
48	Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specificbiosensor. Biosensors and Bioelectronics, 2013, 42, 626-631.	10.1	128
49	Self-referenced sensing based on terahertz metamaterial for aqueous solutions. Applied Physics Letters, 2013, 102, .	3.3	49
50	Design of a polarization insensitive multiband terahertz metamaterial absorber. Journal Physics D: Applied Physics, 2013, 46, 195103.	2.8	111
51	Sensing self-assembled alkanethiols by differential transmission interrogation with terahertz metamaterials. Applied Optics, 2013, 52, 4877.	1.8	16
52	Fabrication of indium tin oxide bump/pit structures on GaN-based light emitting diodes. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, .	1.2	0
53	Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells. Applied Optics, 2013, 52, 2312.	1.8	32
54	Sensing properties of infrared nanostructured plasmonic crystals fabricated by electron beam lithography and argon ion milling. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 06FE02.	1.2	1

#	Article	lF	CITATION
55	Visible transmission response of nanoscale complementary metamaterials for sensing applications. Nanotechnology, 2012, 23, 275503.	2.6	12
56	One-Pot Synthesis of Liquid Hg/Solid \hat{l}^2 -HgS Metalâ 'Semiconductor Heterostructures with Unique Electrical Properties. ACS Nano, 2011, 5, 2224-2230.	14.6	30
57	Patterned Growth of Polyaniline Nanowire Arrays on a Flexible Substrate for Highâ€Performance Gas Sensing. Small, 2011, 7, 3287-3291.	10.0	22
58	Patterned Growth of Vertically Aligned Polypyrrole Nanowire Arrays. Macromolecular Rapid Communications, 2011, 32, 1998-2002.	3.9	7
59	An Allâ€Solidâ€State Flexible Microâ€supercapacitor on a Chip. Advanced Energy Materials, 2011, 1, 1068-1072.	19.5	344
60	In Vitro Model on Glass Surfaces for Complex Interactions between Different Types of Cells. Langmuir, 2010, 26, 17790-17794.	3.5	22
61	Decorating Polypyrrole Nanotubes with Au Nanoparticles by an In Situ Reduction Process. Macromolecular Rapid Communications, 2009, 30, 936-940.	3.9	66
62	Self-Assembled Organic Functional Nanotubes and Nanorods and Their Sensory Properties. Journal of Physical Chemistry C, 2009, 113, 3929-3933.	3.1	66
63	Conducting Polypyrrole Conical Nanocontainers: Formation Mechanism and Voltage Switchable Property. Macromolecular Rapid Communications, 2008, 29, 1335-1340.	3.9	25
64	Microfabrication and properties of the meta-materials. Microelectronic Engineering, 2006, 83, 1364-1367.	2.4	6