Javier Carrasco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/687051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Strongly compromised inflammatory response to brain injury in interleukin-6-deficient mice. , 1999, 25, 343-357.		171
2	CNS Wound Healing Is Severely Depressed in Metallothionein I- and II-Deficient Mice. Journal of Neuroscience, 1999, 19, 2535-2545.	3.6	147
3	Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia, 2000, 32, 271-285.	4.9	139
4	Redefining the Role of Metallothionein within the Injured Brain. Journal of Biological Chemistry, 2008, 283, 15349-15358.	3.4	130
5	Astrocyte-targeted expression of IL-6 protects the CNSagainst a focal brain injury. Experimental Neurology, 2003, 181, 130-148.	4.1	127
6	Enhanced seizures and hippocampal neurodegeneration following kainic acidâ€induced seizures in metallothioneinâ€lâ€f+â€fIlâ€deficient mice. European Journal of Neuroscience, 2000, 12, 2311-2322.	2.6	122
7	Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acidâ€induced epileptic seizures. Journal of Neuroscience Research, 2005, 79, 522-534.	2.9	119
8	Identification of a signal transducer and activator of transcription (STAT) binding site in the mouse metallothionein-I promoter involved in interleukin-6-induced gene expression. Biochemical Journal, 1999, 337, 59-65.	3.7	89
9	Altered Central Nervous System Cytokine-Growth Factor Expression Profiles and Angiogenesis in Metallothionein-I+II Deficient Mice. Journal of Cerebral Blood Flow and Metabolism, 2000, 20, 1174-1189.	4.3	87
10	Metallothionein (MT)-III: Generation of Polyclonal Antibodies, Comparison With MT-I+II in the Freeze Lesioned Rat Brain and in a Bioassay With Astrocytes, and Analysis of Alzheimer's Disease Brains. Journal of Neurotrauma, 1999, 16, 1115-1129.	3.4	79
11	Metallothionein-1+2 Deficiency Increases Brain Pathology in Transgenic Mice with Astrocyte-Targeted Expression of Interleukin 6. Neurobiology of Disease, 2002, 9, 319-338.	4.4	62
12	Identification of a signal transducer and activator of transcription (STAT) binding site in the mouse metallothionein-I promoter involved in interleukin-6-induced gene expression. Biochemical Journal, 1999, 337, 59.	3.7	60
13	Characterization of central and peripheral components of the hypothalamus–pituitary–adrenal axis in the inbred Roman rat strains. Psychoneuroendocrinology, 2008, 33, 437-445.	2.7	60
14	Zinc or Copper Deficiency-Induced Impaired Inflammatory Response to Brain Trauma May Be Caused by the Concomitant Metallothionein Changes. Journal of Neurotrauma, 2001, 18, 447-463.	3.4	57
15	Metallothionein-I and -III expression in animal models of Alzheimer disease. Neuroscience, 2006, 143, 911-922.	2.3	57
16	Metallothionein-III Prevents Glutamate and Nitric Oxide Neurotoxicity in Primary Cultures of Cerebellar Neurons. Journal of Neurochemistry, 2001, 75, 266-273.	3.9	56
17	Metallothionein and brain inflammation. Journal of Biological Inorganic Chemistry, 2011, 16, 1103-1113.	2.6	56
18	Evidence that metyrapone can act as a stressor: effect on pituitary-adrenal hormones, plasma glucose and brain c-fos induction. European Journal of Neuroscience, 2002, 16, 693-700.	2.6	55

JAVIER CARRASCO

#	Article	IF	CITATIONS
19	Expression of Metallothionein-I, -II, and -III in Alzheimer Disease and Animal Models of Neuroinflammation. Experimental Biology and Medicine, 2006, 231, 1450-1458.	2.4	55
20	METALLOTHIONEIN INDUCTION BY RESTRAINT STRESS: ROLE OF GLUCOCORTICOIDS AND IL-6. Cytokine, 2000, 12, 791-796.	3.2	53
21	Validation of the longâ€ŧerm assessment of hypothalamicâ€pituitaryâ€adrenal activity in rats using hair corticosterone as a biomarker. FASEB Journal, 2015, 29, 859-867.	0.5	50
22	Localization of Metallothionein-I and -III Expression in the CNS of Transgenic Mice with Astrocyte-Targeted Expression of Interleukin 6. Experimental Neurology, 1998, 153, 184-194.	4.1	49
23	Role of metallothionein-III following central nervous system damage. Neurobiology of Disease, 2003, 13, 22-36.	4.4	49
24	Brain response to traumatic brain injury in wildâ€ŧype and interleukinâ€6 knockout mice: a microarray analysis. Journal of Neurochemistry, 2005, 92, 417-432.	3.9	48
25	Interleukin-6 and tumor necrosis factor-α type 1 receptor deficient mice reveal a role of IL-6 and TNF-α on brain metallothionein-I and -III regulation. Molecular Brain Research, 1998, 57, 221-234.	2.3	45
26	Novel roles for metallothioneinâ€I + II (MTâ€I + II) in defense responses, neurogenesis, and tissue restoration after traumatic brain injury: Insights from global gene expression profiling in wildâ€type and MTâ€I + II knockout mice. Journal of Neuroscience Research, 2006, 84, 1452-1474.	2.9	45
27	Characterization of the role of metallothionein-3 in an animal model of Alzheimer's disease. Cellular and Molecular Life Sciences, 2012, 69, 3683-3700.	5.4	45
28	[23] Metallothionein expression and oxidative stress in the brain. Methods in Enzymology, 2002, 348, 238-249.	1.0	42
29	Expression of Growth Inhibitory Factor (Metallothionein-III) mRNA and Protein Following Excitotoxic Immature Brain Injury. Journal of Neuropathology and Experimental Neurology, 1999, 58, 389-397.	1.7	39
30	Metallothionein-I Overexpression Decreases Brain Pathology in Transgenic Mice with Astrocyte-Targeted Expression of Interleukin-6. Journal of Neuropathology and Experimental Neurology, 2003, 62, 315-328.	1.7	39
31	Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia, 2003, 42, 287-306.	4.9	38
32	Metallothioneins Are Upregulated in Symptomatic Mice with Astrocyte-Targeted Expression of Tumor Necrosis Factor-α. Experimental Neurology, 2000, 163, 46-54.	4.1	34
33	IL-6 and TNF-α in unmedicated adults with ADHD: Relationship to cortisol awakening response. Psychoneuroendocrinology, 2017, 79, 67-73.	2.7	32
34	Astrocyte-Targeted Expression of Interleukin-3 and Interferon-α Causes Region-Specific Changes in Metallothionein Expression in the Brain. Experimental Neurology, 2001, 168, 334-346.	4.1	31
35	Role of metallothioneins in peripheral nerve function and regeneration. Cellular and Molecular Life Sciences, 2003, 60, 1209-1216.	5.4	31
36	Muscle-specific interleukin-6 deletion influences body weight and body fat in a sex-dependent manner. Brain, Behavior, and Immunity, 2014, 40, 121-130.	4.1	28

JAVIER CARRASCO

#	Article	IF	CITATIONS
37	The effects of chronic food restriction on hypothalamic–pituitary–adrenal activity depend on morning versus evening availability of food. Pharmacology Biochemistry and Behavior, 2005, 81, 41-46.	2.9	27
38	Characterization of the role of the antioxidant proteins metallothioneins 1 and 2 in an animal model of Alzheimer's disease. Cellular and Molecular Life Sciences, 2012, 69, 3665-3681.	5.4	27
39	Metallothionein prevents neurodegeneration and central nervous system cell death after treatment with gliotoxin 6-aminonicotinamide. Journal of Neuroscience Research, 2004, 77, 35-53.	2.9	26
40	Behavioral and neuroendocrine consequences of juvenile stress combined with adult immobilization in male rats. Hormones and Behavior, 2014, 66, 475-486.	2.1	24
41	Increased Cardiovascular and Anxiety Outcomes but Not Endocrine Biomarkers of Stress During Performance of Endoscopic Sinus Surgery. JAMA Otolaryngology, 2011, 137, 487.	1.2	22
42	Diverging mechanisms for TNFâ€Î± receptors in normal mouse brains and in functional recovery after injury: From gene to behavior. Journal of Neuroscience Research, 2007, 85, 2668-2685.	2.9	21
43	Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats. PLoS ONE, 2018, 13, e0190044.	2.5	18
44	Overexpression of Metallothionein-1 Modulates the Phenotype of the Tg2576 Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 51, 81-95.	2.6	17
45	Emotional responses to a negative emotion induction procedure in Borderline Personality Disorder. International Journal of Clinical and Health Psychology, 2013, 13, 9-17.	5.1	14
46	Evidence against a critical role of CB1 receptors in adaptation of the hypothalamic–pituitary–adrenal axis and other consequences of daily repeated stress. European Neuropsychopharmacology, 2015, 25, 1248-1259.	0.7	14
47	Interleukinâ€6 deletion in mice driven by a <scp>P</scp> 2â€ <scp>C</scp> reâ€ <scp>ERT</scp> 2 prevents against highâ€fat dietâ€induced gain weight and adiposity in female mice. Acta Physiologica, 2014, 211, 585-596.	3.8	13
48	Chlorella vulgaris reduces the impact of stress on hypothalamic–pituitary–adrenal axis and brain c-fos expression. Psychoneuroendocrinology, 2016, 65, 1-8.	2.7	12
49	Male long-Evans rats: An outbred model of marked hypothalamic-pituitary-adrenal hyperactivity. Neurobiology of Stress, 2021, 15, 100355.	4.0	12
50	Effect of dietary zinc deficiency on brain metallothionein-I and -III mRNA levels during stress and inflammation. Neurochemistry International, 2000, 36, 555-562.	3.8	11
51	Influence of Transgenic Metallothionein-1 on Gliosis, CA1 Neuronal Loss, and Brain Metal Levels of the Tg2576 Mouse Model of Alzheimer's Disease. International Journal of Molecular Sciences, 2017, 18, 251.	4.1	8
52	Muscular interleukin-6 differentially regulates skeletal muscle adaptation to high-fat diet in a sex-dependent manner. Cytokine, 2015, 74, 145-151.	3.2	5
53	The comparison of mouse full metallothioneinâ€1 versus α and β domains and metallothioneinâ€1â€ŧoâ€3 mutation following traumatic brain injury reveals different biological motifs. Journal of Neuroscience Research, 2010, 88, 1708-1718.	2.9	4
54	Strongly compromised inflammatory response to brain injury in interleukinâ€6â€deficient mice. Glia, 1999, 25, 343-357.	4.9	4

#	Article	IF	CITATIONS
55	Liver and brain metallothionein regulation in transgenic mice overexpressing interleukin-6 and in mice carrying a null mutation in the interleukin-6 gene. , 1999, , 363-370.		4
56	Absence of metallothionein-3 produces changes on MT-1/2 regulation in basal conditions and alters hypothalamic-pituitary–adrenal (HPA) axis. Neurochemistry International, 2014, 74, 65-73.	3.8	1
57	Molecular aspects of metallothioneins in dementias. , 2020, , 115-130.		0