Joyce Kelly Da Silva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6870198/publications.pdf

Version: 2024-02-01

82 papers 1,652 citations

304743 22 h-index 35 g-index

82 all docs 82 docs citations

times ranked

82

2156 citing authors

#	Article	IF	Citations
1	Essential Oils as Antiviral Agents, Potential of Essential Oils to Treat SARS-CoV-2 Infection: An In-Silico Investigation. International Journal of Molecular Sciences, 2020, 21, 3426.	4.1	179
2	Copaifera of the Neotropics: A Review of the Phytochemistry and Pharmacology. International Journal of Molecular Sciences, 2018, 19, 1511.	4.1	75
3	Composition, antioxidant capacity and cytotoxic activity of Eugenia uniflora L. chemotype-oils from the Amazon. Journal of Ethnopharmacology, 2019, 232, 30-38.	4.1	67
4	Essential oils of Amazon Piper species and their cytotoxic, antifungal, antioxidant and anti-cholinesterase activities. Industrial Crops and Products, 2014, 58, 55-60.	5. 2	62
5	Essential Oils from Neotropical Piper Species and Their Biological Activities. International Journal of Molecular Sciences, 2017, 18, 2571.	4.1	61
6	Chemical composition, antinociceptive and anti-inflammatory effects in rodents of the essential oil of Peperomia serpens (Sw.) Loud. Journal of Ethnopharmacology, 2011, 138, 479-486.	4.1	54
7	Volatiles of Black Pepper Fruits (Piper nigrum L.). Molecules, 2019, 24, 4244.	3.8	48
8	Antioxidant Capacity and Cytotoxicity of Essential Oil and Methanol Extract of Aniba canelilla (H.B.K.) Mez. Journal of Agricultural and Food Chemistry, 2007, 55, 9422-9426.	5.2	47
9	Essential oil of citronella modulates electrophysiological responses in tambaqui Colossoma macropomum: A new anaesthetic for use in fish. Aquaculture, 2017, 479, 60-68.	3.5	45
10	Antinociceptive activity of 1-nitro-2-phenylethane, the main component of Aniba canelilla essential oil. Phytomedicine, 2009, 16, 555-559.	5.3	44
11	1-Nitro-2-phenylethane, the main constituent of the essential oil of Aniba canelilla, elicits a vago-vagal bradycardiac and depressor reflex in normotensive rats. European Journal of Pharmacology, 2010, 638, 90-98.	3.5	36
12	Antifungal Activity and Computational Study of Constituents from Piper divaricatum Essential Oil against Fusarium Infection in Black Pepper. Molecules, 2014, 19, 17926-17942.	3.8	36
13	Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules, 2020, 10, 328.	4.0	33
14	Tyrosinase inhibitory activity, molecular docking studies and antioxidant potential of chemotypes of Lippia origanoides (Verbenaceae) essential oils. PLoS ONE, 2017, 12, e0175598.	2.5	33
15	Use of mixture design in drug-excipient compatibility determinations: Thymol nanoparticles case study. Journal of Pharmaceutical and Biomedical Analysis, 2017, 137, 196-203.	2.8	32
16	Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity. Medicines (Basel, Switzerland), 2017, 4, 51.	1.4	31
17	Lipid nanoparticles as carriers of cyclodextrin inclusion complexes: A promising approach for cutaneous delivery of a volatile essential oil. Colloids and Surfaces B: Biointerfaces, 2019, 182, 110382.	5.0	30
18	The chemistry and biological activities of Peperomia pellucida (Piperaceae): A critical review. Journal of Ethnopharmacology, 2019, 232, 90-102.	4.1	29

#	Article	IF	CITATIONS
19	Monoterpenes and Sesquiterpenes of Essential Oils from Psidium Species and Their Biological Properties. Molecules, 2021, 26, 965.	3.8	27
20	Essentials Oils from Brazilian Eugenia and Syzygium Species and Their Biological Activities. Biomolecules, 2020, 10, 1155.	4.0	26
21	Cardiovascular effects of 1-nitro-2-phenylethane, the main constituent of the essential oil of Aniba canelilla, in spontaneously hypertensive rats. Fundamental and Clinical Pharmacology, 2011, 25, 661-669.	1.9	25
22	Antioxidant capacity and biological activity of essential oil and methanol extract of Hyptis crenata Pohl ex Benth. Revista Brasileira De Farmacognosia, 2009, 19, 230-235.	1.4	24
23	Antibacterial action against food-borne microorganisms and antioxidant activity of carvacrol-rich oil from Lippia origanoides Kunth. Lipids in Health and Disease, 2015, 14, 145.	3.0	23
24	Essential oil of Piper divaricatum induces a general anaesthesia-like state and loss of skeletal muscle tonus in juvenile tambaqui, Colossoma macropomum. Aquaculture, 2019, 510, 169-175.	3.5	23
25	Chemical Diversity, Biological Activity, and Genetic Aspects of Three Ocotea Species from the Amazon. International Journal of Molecular Sciences, 2017, 18, 1081.	4.1	22
26	Acetylcholinesterase Inhibitory Activity and Molecular Docking Study of 1â€Nitroâ€2â€Phenylethane, the Main Constituent of <i>Aniba canelilla</i> Essential Oil. Chemical Biology and Drug Design, 2014, 84, 192-198.	3.2	19
27	Arbuscular Mycorrhizal Fungi Colonization Promotes Changes in the Volatile Compounds and Enzymatic Activity of Lipoxygenase and Phenylalanine Ammonia Lyase in Piper nigrum L. †Bragantinaâ€. Plants, 2019, 8, 442.	3.5	19
28	Essential Oil Composition, Antioxidant Capacity and Antifungal Activity of Piper divaricatum. Natural Product Communications, 2010, 5, 1934578X1000500.	0.5	18
29	Evaluation and Theoretical Study on the Anti-inflammatory Mechanism of 1-Nitro-2-phenylethane. Planta Medica, 2013, 79, 628-633.	1.3	18
30	Antioxidant Capacity and Larvicidal and Antifungal Activities of Essential Oils and Extracts from Piper krukoffii. Natural Product Communications, 2011, 6, 1934578X1100600.	0.5	15
31	Chemical variability in the essential oil of leaves of Ara \tilde{A} § \tilde{A}_i (Psidium guineense Sw.), with occurrence in the Amazon. Chemistry Central Journal, 2018, 12, 52.	2.6	15
32	Chemical composition and biological activities of two chemotype-oils from Cinnamomum verum J. Presl growing in North Brazil. Journal of Food Science and Technology, 2020, 57, 3176-3183.	2.8	15
33	Flavonoids, antioxidant potential and antimicrobial activity of <i>Myrcia rufipila</i> mcvaugh leaves (myrtaceae). Natural Product Research, 2021, 35, 1717-1721.	1.8	15
34	Essential oil composition, antioxidant capacity and antifungal activity of Piper divaricatum. Natural Product Communications, 2010, 5, 477-80.	0.5	15
35	Antioxidant capacity and larvicidal and antifungal activities of essential oils and extracts from Piper krukoffii. Natural Product Communications, 2011, 6, 1361-6.	0.5	15
36	Seasonal Variability of a Caryophyllane Chemotype Essential Oil of Eugenia patrisii Vahl Occurring in the Brazilian Amazon. Molecules, 2022, 27, 2417.	3.8	15

#	Article	IF	CITATIONS
37	Secondary Metabolic Profile as a Tool for Distinction and Characterization of Cultivars of Black Pepper (Piper nigrum L.) Cultivated in Pará State, Brazil. International Journal of Molecular Sciences, 2021, 22, 890.	4.1	14
38	Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl. Lipids in Health and Disease, 2016, 15, 174.	3.0	13
39	Chemical Composition and Biological Activity ofLavandula pubescensEssential Oil from Yemen. Journal of Essential Oil-bearing Plants: JEOP, 2017, 20, 509-515.	1.9	13
40	Efficient esterification of eugenol using a microwave-activated waste kaolin. Reaction Kinetics, Mechanisms and Catalysis, 2020, 130, 633-653.	1.7	13
41	Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids From Brazil. Natural Product Communications, 2021, 16, 1934578X2199615.	0.5	13
42	Antinociceptive Activity and Toxicity Evaluation of the Fatty Oil from Plukenetia polyadenia Mull. Arg. (Euphorbiaceae). Molecules, 2015, 20, 7925-7939.	3.8	12
43	Phenylpropanoid-rich Essential Oils of Piper Species from the Amazon and their Antifungal and Anti-cholinesterase Activities. Natural Product Communications, 2016, 11, 1934578X1601101.	0.5	12
44	Secondary Metabolic Profiles of Two Cultivars of Piper nigrum (Black Pepper) Resulting from Infection by Fusarium solani f. sp. piperis. International Journal of Molecular Sciences, 2017, 18, 2434.	4.1	12
45	Effects of inoculation by arbuscular mycorrhizal fungi on the composition of the essential oil, plant growth, and lipoxygenase activity of Piper aduncum L AMB Express, 2019, 9, 29.	3.0	12
46	Lupane triterpenoids, antioxidant potential and antimicrobial activity of <i>Myrciaria floribunda</i> (H. West ex Willd.) O. Berg Natural Product Research, 2019, 33, 506-515.	1.8	12
47	Determination of Volatile Organic Compounds and Antibacterial Activity of the Amazonian Cyanobacterium Synechococcus sp. Strain GFB01. Molecules, 2020, 25, 4744.	3.8	12
48	Essential Oil Composition of Three Peperomia Species from the Amazon, Brazil. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	11
49	Essential oil composition of Croton palanostigma Klotzsch from north Brazil. Journal of the Brazilian Chemical Society, 2009, 20, 1188-1192.	0.6	11
50	Detrimental Effect of Phenol Red on the Vitrification of Cat (Felis catus) Ovarian Tissue. Biopreservation and Biobanking, 2016, 14, 17-22.	1.0	11
51	Essential oil composition of three Peperomia species from the Amazon, Brazil. Natural Product Communications, 2009, 4, 427-30.	0.5	11
52	Essential oil composition and antioxidant capacity of Lippia schomburgkiana. Natural Product Communications, 2009, 4, 1281-6.	0.5	11
53	Essential Oil Composition and Antioxidant Capacity of Lippia schomburgkiana. Natural Product Communications, 2009, 4, 1934578X0900400.	0.5	10
54	Antioxidant, Antimicrobial, and Cytotoxic Properties of <i>Aniba parviflora</i> Essential Oils from the Amazon. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	10

#	Article	IF	CITATIONS
55	Seasonal Study of Methyleugenol Chemotype of <i>Ocimum campechianum</i> Essential Oil and Its Fungicidal and Antioxidant Activities. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	10
56	Variations in Essential Oil Compositions of <i>Lavandula pubescens</i> (Lamiaceae) Aerial Parts Growing Wild in Yemen. Chemistry and Biodiversity, 2017, 14, e1600286.	2.1	9
57	Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of <i>Endlicheria arenosa</i> (Lauraceae) from the Amazon. Natural Product Communications, 2016, 11, 1934578X1601100.	0.5	8
58	Chemical Diversity and Therapeutic Effects of Essential Oils of Aniba Species from the Amazon: A Review. Plants, 2021, 10, 1854.	3.5	8
59	Secondary Metabolism and Plant Growth of Piper divaricatum (Piperaceae) Inoculated with Arbuscular Mycorrhizal Fungi and Phosphorus Supplementation. Agronomy, 2022, 12, 596.	3.0	8
60	Phytochemical Analysis of the Fruit Pulp Extracts from Annona crassiflora Mart. and Evaluation of Their Antioxidant and Antiproliferative Activities. Foods, 2022, 11, 2079.	4.3	8
61	Chemical Diversity and Biological Activities of Essential Oils from Licaria, Nectrandra and Ocotea Species (Lauraceae) with Occurrence in Brazilian Biomes. Biomolecules, 2020, 10, 869.	4.0	7
62	Phenylpropanoid-rich Essential Oils of Piper Species from the Amazon and their Antifungal and Anti-cholinesterase Activities. Natural Product Communications, 2016, 11, 1907-1911.	0.5	7
63	Chemical Composition and Variability of the Volatile Components of Myrciaria Species Growing in the Amazon Region. Molecules, 2022, 27, 2234.	3.8	7
64	Xanthones from the Roots of Moutabea guianensis Aubl Molecules, 2015, 20, 127-134.	3.8	6
65	Antioxidant activity of oily extract obtained from Lippia origanoides improves the quality of bovine embryos produced in vitro. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2019, 71, 723-731.	0.4	6
66	Seasonal and Circadian Rhythm of a 1,8-Cineole Chemotype Essential Oil of <i>Calycolpus goetheanus</i> From Maraj \tilde{A}^3 Island, Brazilian Amazon. Natural Product Communications, 2020, 15, 1934578X2093305.	0.5	6
67	Allelopathic potential and phytochemical screening of Piper divaricatum extracts on germination and growth of indicator plant (Lactuca sativa). South African Journal of Botany, 2021, 138, 495-499.	2.5	6
68	Antioxidant capacity and biological activity of essential oil and methanol extract of Conobea scoparioides (Cham. & Schltdl.) Benth Journal of the Brazilian Chemical Society, 2009, 20, 1031-1035.	0.6	5
69	Chemical Profile and <i>in vitro</i> Biological Activities of Essential Oils of <i>Nectandra puberula</i> and <i>N. cuspidata</i> from the Amazon. Natural Product Communications, 2017, 12, 1934578X1701200.	0.5	5
70	Essential Oil Composition and DNA Barcode and Identification of Aniba species (Lauraceae) Growing in the Amazon Region. Molecules, 2021, 26, 1914.	3.8	5
71	Antioxidant, Antimicrobial, and Cytotoxic Properties of Aniba parviflora Essential Oils from the Amazon. Natural Product Communications, 2016, 11, 1025-1028.	0.5	5
72	Proliferation of human adipose tissue-derived stem cells stimulated by oil rich in thymol of Lippia origanoides. Acta Cirurgica Brasileira, 2018, 33, 431-438.	0.7	4

#	Article	IF	CITATIONS
73	Variability in the Chemical Composition of Eugenia biflora Essential Oils from the Brazilian Amazon. Natural Product Communications, 2019, 14, 1934578X1989243.	0.5	4
74	Remarkable capacity of brosimine b to disrupt methicillin-resistant Staphylococcus aureus (MRSA) preformed biofilms. Microbial Pathogenesis, 2020, 140, 103967.	2.9	4
75	Influence on Secondary Metabolism of Piper nigrum L. by Co-Inoculation with Arbuscular Mycorrhizal Fungi and Fusarium solani f. sp. piperis. Microorganisms, 2021, 9, 484.	3.6	4
76	Chemical Study and Evaluation of the Antioxidant Potential of Sapwood of Vatairea guianensis Aubl Revista Virtual De Quimica, 2015, 7, .	0.4	3
77	Variation in Peperomia pellucida growth and secondary metabolism after rhizobacteria inoculation. PLoS ONE, 2022, 17, e0262794.	2.5	3
78	Chemical Composition, Antioxidant, and Antimicrobial Activities of Essential Oils of Endlicheria arenosa (Lauraceae) from the Amazon. Natural Product Communications, 2016, 11, 695-8.	0.5	3
79	Comparison of Volatile Profile and Antioxidant Activity of Piper divaricatum G. Meyer (Piperaceae) Using Cuttings and Cell Tissue. Journal of the Brazilian Chemical Society, 2019, , .	0.6	2
80	The soluble guanylate cyclase stimulator, 1-nitro-2-phenylethane, reverses monocrotaline-induced pulmonary arterial hypertension in rats. Life Sciences, 2021, 275, 119334.	4.3	2
81	New Isoflavones from the Leaves of Vatairea guianensis Aubl \tilde{A} ©. Journal of the Brazilian Chemical Society, 2013, , .	0.6	2
82	Morphometry of bovine blastocysts produced in vitro in culture media with antioxidants cysteamine or oily extract of Lippia origanoides. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2021, 73, 799-811.	0.4	1