Marina E Emborg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6870097/publications.pdf

Version: 2024-02-01

186265 114465 4,140 79 28 63 citations h-index g-index papers 82 82 82 4426 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Neurodegeneration Prevented by Lentiviral Vector Delivery of GDNF in Primate Models of Parkinson's Disease. Science, 2000, 290, 767-773.	12.6	1,201
2	Age-related declines in nigral neuronal function correlate with motor impairments in rhesus monkeys. Journal of Comparative Neurology, 1998, 401, 253-265.	1.6	267
3	Lentiviral Gene Transfer to the Nonhuman Primate Brain. Experimental Neurology, 1999, 160, 1-16.	4.1	186
4	Contributions of non-human primates to neuroscience research. Lancet, The, 2008, 371, 1126-1135.	13.7	183
5	Specification of Midbrain Dopamine Neurons from Primate Pluripotent Stem Cells. Stem Cells, 2012, 30, 1655-1663.	3.2	182
6	The PPAR- \hat{I}^3 agonist pioglitazone modulates inflammation and induces neuroprotection in parkinsonian monkeys. Journal of Neuroinflammation, 2011, 8, 91.	7.2	164
7	Nonhuman Primate Models of Parkinson's Disease. ILAR Journal, 2007, 48, 339-355.	1.8	158
8	Evaluation of animal models of Parkinson's disease for neuroprotective strategies. Journal of Neuroscience Methods, 2004, 139, 121-143.	2.5	134
9	Induced Pluripotent Stem Cell-Derived Neural Cells Survive and Mature in the Nonhuman Primate Brain. Cell Reports, 2013, 3, 646-650.	6.4	126
10	Subthalamic Glutamic Acid Decarboxylase Gene Therapy: Changes in Motor Function and Cortical Metabolism. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 501-509.	4.3	120
11	The NIH Somatic Cell Genome Editing program. Nature, 2021, 592, 195-204.	27.8	84
12	Autologous transplant therapy alleviates motor and depressive behaviors in parkinsonian monkeys. Nature Medicine, 2021, 27, 632-639.	30.7	70
13	GDNF-Secreting Human Neural Progenitor Cells Increase Tyrosine Hydroxylase and VMAT2 Expression in MPTP-Treated Cynomolgus Monkeys. Cell Transplantation, 2008, 17, 383-395.	2.5	67
14	Overexpressing Corticotropin-Releasing Factor in the Primate Amygdala Increases Anxious Temperament and Alters Its Neural Circuit. Biological Psychiatry, 2016, 80, 345-355.	1.3	61
15	A Monoclonal Antibody-GDNF Fusion Protein Is Not Neuroprotective and Is Associated with Proliferative Pancreatic Lesions in Parkinsonian Monkeys. PLoS ONE, 2012, 7, e39036.	2.5	59
16	Neurobehavioral development of common marmoset monkeys. Developmental Psychobiology, 2016, 58, 141-158.	1.6	52
17	Delayed onset of progressive dystonia following subacute 3-nitropropionic acid treatment inCebus apella monkeys. Movement Disorders, 2000, 15, 524-530.	3.9	48
18	Overlesioned hemiparkinsonian non human primate model correlation between clinical neurochemical and histochemical changes. Frontiers in Bioscience - Landmark, 2003, 8, a155-166.	3.0	46

#	Article	IF	Citations
19	Cardiac Sympathetic Denervation in 6-OHDA-Treated Nonhuman Primates. PLoS ONE, 2014, 9, e104850.	2.5	41
20	GDNF-secreting human neural progenitor cells increase tyrosine hydroxylase and VMAT2 expression in MPTP-treated cynomolgus monkeys. Cell Transplantation, 2008, 17, 383-95.	2.5	41
21	Nonhuman Primate Models of Neurodegenerative Disorders. ILAR Journal, 2017, 58, 190-201.	1.8	38
22	Intracerebral Transplantation of Differentiated Human Embryonic Stem Cells to Hemiparkinsonian Monkeys. Cell Transplantation, 2013, 22, 831-838.	2.5	37
23	Survival and early differentiation of human neural stem cells transplanted in a nonhuman primate model of stroke. Journal of Neurosurgery, 2006, 105, 96-102.	1.6	36
24	Evaluation of Hydrodynamic Limb Vein Injections in Nonhuman Primates. Human Gene Therapy, 2010, 21, 829-842.	2.7	35
25	Pathways of Infusate Loss during Convection-Enhanced Delivery into the Putamen Nucleus. Stereotactic and Functional Neurosurgery, 2013, 91, 69-78.	1.5	35
26	In Vitro CRISPR/Cas9-Directed Gene Editing to Model LRRK2 G2019S Parkinson's Disease in Common Marmosets. Scientific Reports, 2020, 10, 3447.	3.3	34
27	Autonomic dysfunction in Parkinson disease and animal models. Clinical Autonomic Research, 2019, 29, 397-414.	2.5	32
28	Cell-Based Therapies for Parkinson's Disease: Past, Present, and Future. Antioxidants and Redox Signaling, 2009, 11, 2189-2208.	5.4	31
29	<p>Colonic inflammation affects myenteric alpha-synuclein in nonhuman primates</p> . Journal of Inflammation Research, 2019, Volume 12, 113-126.	3.5	31
30	Intraoperative Intracerebral MRI-Guided Navigation for Accurate Targeting in Nonhuman Primates. Cell Transplantation, 2010, 19, 1587-1597.	2.5	30
31	Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem Cells and Development, 2017, 26, 1225-1235.	2.1	30
32	\hat{l}_{\pm} -Synuclein and nonhuman primate models of Parkinson's disease. Journal of Neuroscience Methods, 2015, 255, 38-51.	2.5	29
33	Preclinical Assessment of Stem Cell Therapies for Neurological Diseases. ILAR Journal, 2010, 51, 24-41.	1.8	28
34	Expression of peroxisome proliferator-activated receptor-gamma in the substantia nigra of hemiparkinsonian nonhuman primates. Neurological Research, 2014, 36, 634-646.	1.3	25
35	Peripheral Biomarkers of Parkinson's Disease Progression and Pioglitazone Effects. Journal of Parkinson's Disease, 2015, 5, 731-736.	2.8	25
36	Cell transplantation for Parkinson's disease. Neurological Research, 2004, 26, 355-362.	1.3	23

#	Article	IF	Citations
37	Differential Loss of Presynaptic Dopaminergic Markers in Parkinsonian Monkeys. Cell Transplantation, 2007, 16, 229-244.	2.5	22
38	Nonuniform Cardiac Denervation Observed by 11C-meta-Hydroxyephedrine PET in 6-OHDA-Treated Monkeys. PLoS ONE, 2012, 7, e35371.	2.5	22
39	Neuroprotective Properties of a Novel Non-Thiazoledinedione Partial PPAR-Î ³ Agonist against MPTP. PPAR Research, 2013, 2013, 1-16.	2.4	22
40	Titer and Product Affect the Distribution of Gene Expression after Intraputaminal Convection-Enhanced Delivery. Stereotactic and Functional Neurosurgery, 2014, 92, 182-194.	1.5	20
41	Delivery of therapeutic molecules into the CNS. Progress in Brain Research, 2000, 128, 323-332.	1.4	17
42	The Immunophilin Ligand GPI-1046 Does Not Have Neuroregenerative Effects in MPTP-Treated Monkeys. Experimental Neurology, 2002, 178, 236-242.	4.1	17
43	Technique for Bilateral Intracranial Implantation of Cells in Monkeys Using an Automated Delivery System. Cell Transplantation, 2000, 9, 595-607.	2.5	16
44	Crossâ€species comparison of behavioral neurodevelopmental milestones in the common marmoset monkey and human child. Developmental Psychobiology, 2017, 59, 807-821.	1.6	16
45	[18F]FEPPA PET imaging for monitoring CD68-positive microglia/macrophage neuroinflammation in nonhuman primates. EJNMMI Research, 2020, 10, 93.	2.5	15
46	Modeling and imaging cardiac sympathetic neurodegeneration in Parkinson's disease. American Journal of Nuclear Medicine and Molecular Imaging, 2014, 4, 125-59.	1.0	15
47	Development of a novel postnatal neurobehavioral scale for evaluation of common marmoset monkeys. American Journal of Primatology, 2015, 77, 401-417.	1.7	14
48	Real-Time Intraoperative MRI Intracerebral Delivery of Induced Pluripotent Stem Cell-Derived Neurons. Cell Transplantation, 2017, 26, 613-624.	2.5	14
49	Long-Term MPTP-Treated Monkeys Are Resistant to GM1 Systemic Therapy. Molecular and Chemical Neuropathology, 1994, 21, 75-82.	1.0	13
50	Rest tremor in rhesus monkeys with MPTP-induced parkinsonism. Frontiers in Bioscience - Landmark, 2003, 8, a148-154.	3.0	12
51	The Relation between Catheter Occlusion and Backflow during Intraparenchymal Cerebral Infusions. Stereotactic and Functional Neurosurgery, 2015, 93, 102-109.	1.5	11
52	Neurotoxin-Induced Catecholaminergic Loss in the Colonic Myenteric Plexus of Rhesus Monkeys. , 2016, 06, .		11
53	In vivo imaging of inflammation and oxidative stress in a nonhuman primate model of cardiac sympathetic neurodegeneration. Npj Parkinson's Disease, 2018, 4, 22.	5. 3	11
54	The role of nonhuman primate models in the development of cell-based therapies for Parkinson's disease. Journal of Neural Transmission, 2018, 125, 365-384.	2.8	10

#	Article	IF	Citations
55	Systemic administration of 6-OHDA to rhesus monkeys upregulates HLA-DR expression in brain microvasculature. Journal of Inflammation Research, 2014, 7, 139.	3.5	9
56	Vocalization development in common marmosets for neurodegenerative translational modeling. Neurological Research, 2018, 40, 303-311.	1.3	8
57	Post mortem evaluation of inflammation, oxidative stress, and PPARÎ 3 activation in a nonhuman primate model of cardiac sympathetic neurodegeneration. PLoS ONE, 2020, 15, e0226999.	2.5	8
58	Modeling genetic diseases in nonhuman primates through embryonic and germline modification: Considerations and challenges. Science Translational Medicine, 2022, 14, eabf4879.	12.4	7
59	Intraoperative device targeting using real-time MRI. , 2011, , .		6
60	Peripheral and cognitive signs: delineating the significance of impaired catecholamine metabolism in Parkinson's disease progression. Journal of Neurochemistry, 2014, 131, 129-133.	3.9	6
61	In Vitro Modeling of Leucine-Rich Repeat Kinase 2 G2019S-Mediated Parkinson's Disease Pathology. Stem Cells and Development, 2018, 27, 960-967.	2.1	5
62	α-Synuclein Expression Is Preserved in Substantia Nigra GABAergic Fibers of Young and Aged Neurotoxin-Treated Rhesus Monkeys. Cell Transplantation, 2019, 28, 379-387.	2.5	5
63	Can we prevent parkinson's disease?. Frontiers in Bioscience - Landmark, 2009, Volume, 1642.	3.0	4
64	Spatiotemporal quantification of gait in common marmosets. Journal of Neuroscience Methods, 2020, 330, 108517.	2.5	3
65	Nonhuman Primate Models for Testing Gene Therapy for Neurodegenerative Disorders. , 2006, , 109-119.		2
66	Acute Exposure to the Food-Borne Pathogen Listeria monocytogenes Does Not Induce α-Synuclein Pathology in the Colonic ENS of Nonhuman Primates. Journal of Inflammation Research, 2021, Volume 14, 7265-7279.	3.5	2
67	Alpha-synuclein and tau are abundantly expressed in the ENS of the human appendix and monkey cecum. PLoS ONE, 2022, 17, e0269190.	2.5	2
68	Simulating convection-enhanced delivery in the putamen using probabilistic tractography., 2011, 2011, 787-790.		1
69	Parkinson's Disease in Humans and in Nonhuman Primate Aging and Neurotoxin Models. , 2018, , 617-639.		1
70	Identification of novel rhesus macaque microRNAs from na \tilde{A} ve whole blood. Molecular Biology Reports, 2019, 46, 5511-5516.	2.3	1
71	Effects of Cardiac Sympathetic Neurodegeneration and PPAR $\hat{1}^3$ Activation on Rhesus Macaque Whole Blood miRNA and mRNA Expression Profiles. BioMed Research International, 2020, 2020, 1-13.	1.9	1
72	Myelin Basic Protein and Cardiac Sympathetic Neurodegeneration in Nonhuman Primates. Neurology Research International, 2021, 2021, 1-13.	1.3	1

#	Article	IF	CITATIONS
73	Genetic Models of Parkinson's Disease and Their Study in Nonhuman Primates. , 2018, , 641-646.		О
74	Title is missing!. , 2020, 15, e0226999.		0
75	Title is missing!. , 2020, 15, e0226999.		O
76	Title is missing!. , 2020, 15, e0226999.		0
77	Title is missing!. , 2020, 15, e0226999.		O
78	Title is missing!. , 2020, 15, e0226999.		0
79	Title is missing!. , 2020, 15, e0226999.		O