Mesut Taskin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6869772/publications.pdf

Version: 2024-02-01

	361045	454577
1,145	20	30
citations	h-index	g-index
53	53	1080
		citing authors
		3
		1,145 20 h-index 53 53

#	Article	IF	CITATIONS
1	Exopolysaccharide production with high antibacterial efficiency from Lentinus edodes using sheep wool protein hydrolysate. Biomass Conversion and Biorefinery, 2022, 12, 537-546.	2.9	2
2	Farnesol and tyrosol: novel inducers for microbial production of carotenoids and prodigiosin. Archives of Microbiology, 2022, 204, 107.	1.0	1
3	Microbial conversion of waste baklava syrup to biofuels and bioproducts. Biocatalysis and Agricultural Biotechnology, 2022, 42, 102364.	1.5	2
4	Production of waterâ€soluble sulfated exopolysaccharide with anticancer activity from <i>Anoxybacillus gonensis</i> <scp>YK25</scp> . Journal of Chemical Technology and Biotechnology, 2021, 96, 1258-1266.	1.6	16
5	Screening and characterization of a novel Antibiofilm polypeptide derived from filamentous Fungi. Journal of Proteomics, 2021, 233, 104075.	1.2	7
6	Exopolysaccharide of Anoxybacillus pushchinoensis G11 has antitumor and antibiofilm activities. Archives of Microbiology, 2021, 203, 2101-2118.	1.0	5
7	Bioconversion of waste sheep wool to microbial peptone by <i>Bacillus licheniformis</i> <scp>EY2</scp> . Biofuels, Bioproducts and Biorefining, 2021, 15, 1372-1384.	1.9	9
8	Preparation of chitosan from waste shrimp shells fermented with Paenibacillus jamilae BAT1. International Journal of Biological Macromolecules, 2021, 183, 1191-1199.	3.6	18
9	Improving light-sensing behavior of Cu/n-Si photodiode with Human Serum Albumin: Microelectronic and dielectric characterization. Optik, 2021, 241, 167069.	1.4	9
10	Enhancement of Amylase and Lipase Production from Bacillus licheniformis 016 Using Waste Chicken Feathers as Peptone Source. Waste and Biomass Valorization, 2020, 11, 1809-1819.	1.8	11
11	Production of linoleic acidâ€rich lipids in molassesâ€based medium by oleaginous fungus <i>Galactomyces geotrichum</i> TS61. Journal of Food Processing and Preservation, 2020, 44, e14518.	0.9	10
12	Waste frying oil hydrolysis and lipase production by cold-adapted Pseudomonas yamanorum LP2 under non-sterile culture conditions. Environmental Technology (United Kingdom), 2020, 42, 1-9.	1.2	8
13	Co-production of Amylase and Protease by Locally Isolated Thermophilic Bacterium Anoxybacillus rupiensis T2 in Sterile and Non-sterile Media Using Waste Potato Peels as Substrate. Waste and Biomass Valorization, 2020, 11 , $6793-6802$.	1.8	16
14	Evaluation of tyrosol and farnesol as inducer in pigment production by <i>Monascus purpureus</i> ATCC16365. Journal of Basic Microbiology, 2020, 60, 669-678.	1.8	10
15	Bacillus pasinlerensis sp. nov., a thermophilic bacterium isolated from a hot spring in Turkey. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 3865-3871.	0.8	17
16	Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms. Current Topics in Medicinal Chemistry, 2019, 18, 2102-2107.	1.0	24
17	Chicken feather peptone: A new alternative nitrogen source for pigment production by Monascus purpureus. Journal of Biotechnology, 2018, 271, 56-62.	1.9	40
18	Efficient expression of recombinant human telomerase inhibitor 1 (hPinX1) in Pichia pastoris. Preparative Biochemistry and Biotechnology, 2018, 48, 535-540.	1.0	6

#	Article	IF	Citations
19	Evaluation of Waste Loquat Kernels as Substrate for Lipid Production by Rhodotorula glutinis SO28. Waste and Biomass Valorization, 2017, 8, 803-810.	1.8	10
20	Sheep wool protein hydrolysate: a new peptone source for microorganisms. Journal of Chemical Technology and Biotechnology, 2016, 91, 1675-1680.	1.6	26
21	Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy, 2016, 99, 198-204.	4.3	7 2
22	Citric acid production from partly deproteinized whey under non-sterile culture conditions using immobilized cells of lactose— positive and cold-adapted Yarrowia lipolytica B9. Journal of Biotechnology, 2016, 231, 32-39.	1.9	34
23	Lipase production with free and immobilized cells of cold-adapted yeast Rhodotorula glutinis HL25. Biocatalysis and Agricultural Biotechnology, 2016, 8, 97-103.	1.5	24
24	Invertase production and molasses decolourization by cold-adapted filamentous fungus Cladosporium herbarum ER-25 in non-sterile molasses medium. Chemical Engineering Research and Design, 2016, 103, 136-143.	2.7	20
25	Nitric oxide: a novel inducer for enhancement of microbial lipase production. Bioprocess and Biosystems Engineering, 2016, 39, 1671-1678.	1.7	2
26	Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions. International Journal of Biological Macromolecules, 2016, 89, 428-433.	3.6	33
27	Microbial lipid production by coldâ€adapted oleaginous yeast <i>Yarrowia lipolytica</i> B9 in nonâ€sterile whey medium. Biofuels, Bioproducts and Biorefining, 2015, 9, 595-605.	1.9	56
28	Protease production by free and immobilized cells of the cold-adapted yeast Cryptococcus victoriae CA-8. Biocatalysis and Biotransformation, 2015, 33, 105-110.	1.1	6
29	Tris–sucrose buffer system: a new specially designed medium for extracellular invertase production by immobilized cells of isolated yeast Cryptococcus laurentii MT-61. Folia Microbiologica, 2014, 59, 9-16.	1.1	13
30	A new strategy for improved glutathione production from <i>Saccharomyces cerevisiae</i> : use of cysteine―and glycine―ich chicken feather protein hydrolysate as a new cheap substrate. Journal of the Science of Food and Agriculture, 2013, 93, 535-541.	1.7	30
31	<scp>L</scp> â€lactic acid production by <i>Rhizopus oryzae</i> MBGâ€10 using starchâ€rich waste loquat kernels as substrate. Starch/Staerke, 2013, 65, 322-329.	1.1	10
32	Inulinase production by <i>Geotrichum candidum</i> OC-7 using migratory locusts as a new substrate and optimization process with Taguchi DOE. Toxicology and Industrial Health, 2013, 29, 704-710.	0.6	15
33	Co-production of tannase and pectinase by free and immobilized cells of the yeast Rhodotorula glutinis MP-10 isolated from tannin-rich persimmon (Diospyros kaki L.) fruits. Bioprocess and Biosystems Engineering, 2013, 36, 165-172.	1.7	34
34	ENHANCEMENT OF INVERTASE PRODUCTION BY <i>Aspergillus niger</i> OZ-3 USING LOW-INTENSITY STATIC MAGNETIC FIELDS. Preparative Biochemistry and Biotechnology, 2013, 43, 177-188.	1.0	23
35	Citric acid production from <i>Aspergillus niger</i> MT-4 using hydrolysate extract of the insect <i>Locusta migratoria</i> . Toxicology and Industrial Health, 2013, 29, 426-434.	0.6	7
36	Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom <i>Morchella esculenta</i> International Journal of Food Sciences and Nutrition, 2012, 63, 597-602.	1.3	29

#	Article	IF	Citations
37	Efficient production of l-lactic acid from chicken feather protein hydrolysate and sugar beet molasses by the newly isolated Rhizopus oryzae TS-61. Food and Bioproducts Processing, 2012, 90, 773-779.	1.8	42
38	Evaluation of waste chicken feathers as peptone source for bacterial growth. Journal of Applied Microbiology, 2011, 111, 826-834.	1.4	67
39	BIOMASS AND EXOPOLYSACCHARIDE PRODUCTION BY MORCHELLA ESCULENTA IN SUBMERGED CULTURE USING THE EXTRACT FROM WASTE LOQUAT (ERIOBOTRYA JAPONICA L.) KERNELS. Journal of Food Processing and Preservation, 2011, 35, 623-630.	0.9	21
40	Effects of extremely low magnetic field on the production of invertase by <i>Rhodotorula glutinis</i> . Toxicology and Industrial Health, 2011, 27, 35-39.	0.6	33
41	Use of waste chicken feathers as peptone for production of carotenoids in submerged culture of Rhodotorula glutinis MT-5. European Food Research and Technology, 2011, 233, 657-665.	1.6	61
42	Effects of Progesterone, β-Estradiol, and Androsterone on the Changes of Inorganic Element Content in Barley Leaves. Biological Trace Element Research, 2011, 143, 1740-1745.	1.9	33
43	Production of carotenoids by Rhodotorula glutinis MT-5 in submerged fermentation using the extract from waste loquat kernels as substrate. Journal of the Science of Food and Agriculture, 2011, 91, 1440-1445.	1.7	34
44	Utilization of waste loquat (Eriobotrya Japonica Lindley) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Science and Biotechnology, 2010, 19, 1069-1075.	1.2	27
45	Production of (<i>R</i>)â€1â€phenylethanols through bioreduction of acetophenones by a new fungus isolate <i>Trichothecium roseum</i> . Chirality, 2010, 22, 543-547.	1.3	13
46	Continuous production of (S)-1-phenylethanol by immobilized cells of Rhodotorula glutinis with a specially designed process. Tetrahedron: Asymmetry, 2010, 21, 461-464.	1.8	17
47	Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresource Technology, 2010, 101, 3825-3829.	4.8	45
48	Reactive dye bioaccumulation by fungus Aspergillus niger isolated from the effluent of sugar fabric-contaminated soil. Toxicology and Industrial Health, 2010, 26, 239-247.	0.6	28
49	Production of (<i>R</i>)â€3′â€fluorophenylethanâ€1â€ol by <i>Trichothecium roseum</i> isolate in a laboratory scale bioreactor. Journal of Chemical Technology and Biotechnology, 2009, 84, 1474-1479.	1.6	5
50	Total production of (R)-3,5-bistrifluoromethylphenyl ethanol by asymmetric reduction of 3,5-bis(trifluoromethyl)-acetophenone in the submerged culture of Penicillium expansum isolate. Tetrahedron: Asymmetry, 2009, 20, 2759-2763.	1.8	36
51	Efficient Synthesis of (S)-1-(2-chlorophenyl)ethanol in the Submerged Culture of Alternaria alternata Isolate. Chinese Journal of Catalysis, 2009, 30, 370-374.	6.9	11
52	Highly enantioselective reduction of acetophenone by locally isolated Alternaria alternata using ram horn peptone. Tetrahedron: Asymmetry, 2007, 18, 1529-1532.	1.8	15
53	Preparation of Chitosan with High Antibacterial Efficiency from Penicillium crustosum TZ18. Journal of Polymers and the Environment, 0, , .	2.4	2