
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6869190/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Diazocarbonyl Compounds in Organofluorine Chemistry. Synlett, 2021, 32, 1060-1071.                                                                                                                                                      | 1.8  | 5         |
| 2  | Base-catalysed <sup>18</sup> F-labelling of trifluoromethyl ketones. Application to the synthesis of<br><sup>18</sup> F-labelled neutrophil elastase inhibitors. Chemical Communications, 2021, 57, 8476-8479.                          | 4.1  | 10        |
| 3  | Electrophilic Fluorination of Alkenes via Boraâ€Wagnerâ€Meerwein Rearrangement. Access to<br>βâ€Difluoroalkyl Boronates. Angewandte Chemie, 2021, 133, 26531.                                                                           | 2.0  | 4         |
| 4  | Electrophilic Fluorination of Alkenes via Boraâ€Wagner–Meerwein Rearrangement. Access to<br>βâ€Difluoroalkyl Boronates. Angewandte Chemie - International Edition, 2021, 60, 26327-26331.                                               | 13.8 | 31        |
| 5  | Mechanisms of Formation and Rearrangement of Benziodoxole-Based CF <sub>3</sub> and SCF <sub>3</sub> Transfer Reagents. Journal of Organic Chemistry, 2020, 85, 15577-15585.                                                            | 3.2  | 4         |
| 6  | Organocatalytic Synthesis of α-Trifluoromethyl Allylboronic Acids by Enantioselective 1,2-Borotropic<br>Migration. Journal of the American Chemical Society, 2020, 142, 21254-21259.                                                    | 13.7 | 41        |
| 7  | Enantioselective Construction of Tertiary Fluoride Stereocenters by Organocatalytic<br>Fluorocyclization. Journal of the American Chemical Society, 2020, 142, 20048-20057.                                                             | 13.7 | 55        |
| 8  | Trifluoromethylthiolation, Trifluoromethylation, and Arylation Reactions of Difluoro Enol Silyl<br>Ethers. Journal of Organic Chemistry, 2020, 85, 8311-8319.                                                                           | 3.2  | 21        |
| 9  | Orthogonal Selectivity in C–H Olefination: Synthesis of Branched Vinylarene with Unactivated<br>Aliphatic Substitution. ACS Catalysis, 2019, 9, 9606-9613.                                                                              | 11.2 | 30        |
| 10 | Trifluoromethylthiolation–arylation of diazocarbonyl compounds by modified Hooz multicomponent<br>coupling. Chemical Science, 2019, 10, 5990-5995.                                                                                      | 7.4  | 23        |
| 11 | Rhodium-mediated <sup>18</sup> F-oxyfluorination of diazoketones using a fluorine-18-containing hypervalent iodine reagent. Chemical Communications, 2019, 55, 13358-13361.                                                             | 4.1  | 16        |
| 12 | Mechanisms of Rh-Catalyzed Oxyfluorination and Oxytrifluoromethylation of Diazocarbonyl<br>Compounds with Hypervalent Fluoroiodine. ACS Catalysis, 2018, 8, 4483-4492.                                                                  | 11.2 | 35        |
| 13 | [ <sup>18</sup> F]fluoro-benziodoxole: a no-carrier-added electrophilic fluorinating reagent. Rapid,<br>simple radiosynthesis, purification and application for fluorine-18 labelling. Chemical<br>Communications, 2018, 54, 4286-4289. | 4.1  | 34        |
| 14 | Copper-catalyzed synthesis of allenylboronic acids. Access to sterically encumbered homopropargylic alcohols and amines by propargylboration. Chemical Science, 2018, 9, 3305-3312.                                                     | 7.4  | 33        |
| 15 | Catalytic asymmetric propargyl- and allylboration of hydrazonoesters: a metal-free approach to<br>sterically encumbered chiral I±-amino acid derivatives. Chemical Communications, 2018, 54, 12852-12855.                               | 4.1  | 21        |
| 16 | Mechanisms of Rh-Catalyzed Oxyaminofluorination and Oxyaminotrifluoromethylthiolation of<br>Diazocarbonyl Compounds with Electrophilic Reagents. Organic Letters, 2018, 20, 6646-6649.                                                  | 4.6  | 20        |
| 17 | Synthesis of Densely Substituted Conjugated Dienes by Transition-Metal-Free Reductive Coupling of<br>Allenylboronic Acids and Tosylhydrazones. Journal of Organic Chemistry, 2018, 83, 8786-8792.                                       | 3.2  | 12        |
| 18 | Synthesis of trifluoromethyl moieties by late-stage copper (I) mediated nucleophilic fluorination.<br>Journal of Fluorine Chemistry, 2017, 194, 51-57.                                                                                  | 1.7  | 8         |

| #  | Article                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis of Benzyl-, Allyl-, and Allenyl-boronates via Copper-Catalyzed Borylation of Alcohols.<br>Organic Letters, 2017, 19, 1204-1207.                                                                                                           | 4.6  | 55        |
| 20 | Copper-Catalyzed, Stereoselective Cross-Coupling of Cyclic Allyl Boronic Acids with α-Diazoketones.<br>Organic Letters, 2017, 19, 1622-1625.                                                                                                        | 4.6  | 17        |
| 21 | Recent Advances in the Preparation and Application of Allylboron Species in Organic Synthesis.<br>Journal of the American Chemical Society, 2017, 139, 2-14.                                                                                        | 13.7 | 237       |
| 22 | Metathesis Mechanism of Zinc-Catalyzed Fluorination of Alkenes with Hypervalent Fluoroiodine. ACS<br>Catalysis, 2017, 7, 1093-1100.                                                                                                                 | 11.2 | 57        |
| 23 | Mechanism and Stereoselectivity of the BINOL-Catalyzed Allylboration of Skatoles. Organic Letters, 2017, 19, 5904-5907.                                                                                                                             | 4.6  | 21        |
| 24 | Geminal difluorination of α,α'- disubstituted styrenes using fluoro-benziodoxole reagent. Migration<br>aptitude of the α-substituents. Journal of Fluorine Chemistry, 2017, 203, 104-109.                                                           | 1.7  | 32        |
| 25 | Trifluoromethylthiolation-Based Bifunctionalization of Diazocarbonyl Compounds by Rhodium<br>Catalysis. Organic Letters, 2017, 19, 4548-4551.                                                                                                       | 4.6  | 44        |
| 26 | Synthesis of Vinyl-, Allyl-, and 2-Boryl Allylboronates via a Highly Selective Copper-Catalyzed<br>Borylation of Propargylic Alcohols. Organic Letters, 2017, 19, 6586-6589.                                                                        | 4.6  | 50        |
| 27 | Palladium-Catalyzed Oxidative Borylation of Allylic C–H Bonds in Alkenes. Organic Letters, 2017, 19,<br>6590-6593.                                                                                                                                  | 4.6  | 33        |
| 28 | Fluorinative ring-opening of cyclopropanes by hypervalent iodine reagents. An efficient method for 1,3-oxyfluorination and 1,3-difluorination. Chemical Science, 2017, 8, 1056-1061.                                                                | 7.4  | 102       |
| 29 | Rhodiumâ€Catalyzed Geminal Oxyfluorination and Oxytrifluoroâ€Methylation of Diazocarbonyl<br>Compounds. Angewandte Chemie, 2016, 128, 8550-8555.                                                                                                    | 2.0  | 23        |
| 30 | Catalytic Borylative Opening of Propargyl Cyclopropane, Epoxide, Aziridine, and Oxetane Substrates:<br>Ligand Controlled Synthesis of Allenyl Boronates and Alkenyl Diboronates. Angewandte Chemie, 2016,<br>128, 1524-1528.                        | 2.0  | 20        |
| 31 | Transitionâ€Metalâ€Free Borylation of Allylic and Propargylic Alcohols. Angewandte Chemie, 2016, 128,<br>4375-4379.                                                                                                                                 | 2.0  | 16        |
| 32 | Catalytic Borylative Opening of Propargyl Cyclopropane, Epoxide, Aziridine, and Oxetane Substrates:<br>Ligand Controlled Synthesis of Allenyl Boronates and Alkenyl Diboronates. Angewandte Chemie -<br>International Edition, 2016, 55, 1502-1506. | 13.8 | 76        |
| 33 | Formation of C(sp3)–C(sp3) Bonds by Palladium Catalyzed Cross-Coupling of α-Diazoketones and<br>Allylboronic Acids. Organic Letters, 2016, 18, 2503-2506.                                                                                           | 4.6  | 15        |
| 34 | Catalytic Asymmetric Allylboration of Indoles and Dihydroisoquinolines with Allylboronic Acids:<br>Stereodivergent Synthesis of up to Three Contiguous Stereocenters. Angewandte Chemie, 2016, 128,<br>14629-14633.                                 | 2.0  | 33        |
| 35 | Catalytic Asymmetric Allylboration of Indoles and Dihydroisoquinolines with Allylboronic Acids:<br>Stereodivergent Synthesis of up to Three Contiguous Stereocenters. Angewandte Chemie -<br>International Edition, 2016, 55, 14417-14421.          | 13.8 | 86        |
| 36 | Rhodium-Catalyzed Oxy-Aminofluorination of Diazoketones with Tetrahydrofurans and<br><i>N</i> -Fluorobenzenesulfonimide. ACS Catalysis, 2016, 6, 6687-6691.                                                                                         | 11.2 | 46        |

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Efficient DBU accelerated synthesis of <sup>18</sup> F-labelled trifluoroacetamides. Chemical Communications, 2016, 52, 13963-13966.                                                                                   | 4.1  | 13        |
| 38 | Rhodiumâ€Catalyzed Geminal Oxyfluorination and Oxytrifluoroâ€Methylation of Diazocarbonyl<br>Compounds. Angewandte Chemie - International Edition, 2016, 55, 8410-8415.                                                | 13.8 | 124       |
| 39 | Synthesis of Allenes by Catalytic Coupling of Propargyl Carbonates with Aryl Iodides in the Presence of Diboron Species. Journal of Organic Chemistry, 2016, 81, 250-255.                                              | 3.2  | 20        |
| 40 | Transitionâ€Metalâ€Free Borylation of Allylic and Propargylic Alcohols. Angewandte Chemie -<br>International Edition, 2016, 55, 4303-4307.                                                                             | 13.8 | 71        |
| 41 | Palladium-Catalyzed Iodofluorination of Alkenes Using Fluoro-Iodoxole Reagent. ACS Catalysis, 2016, 6, 447-450.                                                                                                        | 11.2 | 62        |
| 42 | Catalytic Intramolecular Aminofluorination, Oxyfluorination, and Carbofluorination with a Stable<br>and Versatile Hypervalent Fluoroiodine Reagent. Angewandte Chemie - International Edition, 2015, 54,<br>8533-8537. | 13.8 | 116       |
| 43 | Palladiumâ€Catalyzed Synthesis of 2,3â€Disubstituted Benzofurans: An Approach Towards the Synthesis of Deuterium Labeled Compounds. Advanced Synthesis and Catalysis, 2015, 357, 2331-2338.                            | 4.3  | 41        |
| 44 | Effects of B2pin2 and PCy3 on copper-catalyzed trifluoromethylation of substituted alkenes and alkynes with the Togni reagent. Tetrahedron, 2015, 71, 922-931.                                                         | 1.9  | 21        |
| 45 | Direct Allylation of Quinones with Allylboronates. Journal of Organic Chemistry, 2015, 80, 3343-3348.                                                                                                                  | 3.2  | 28        |
| 46 | Stereoselective Synthesis of 1,4-Diols by a Tandem Allylboration–Allenylboration Sequence. Organic<br>Letters, 2015, 17, 2290-2293.                                                                                    | 4.6  | 24        |
| 47 | Synthesis of Adjacent Quaternary Stereocenters by Catalytic Asymmetric Allylboration. Journal of the<br>American Chemical Society, 2015, 137, 11262-11265.                                                             | 13.7 | 124       |
| 48 | Copper-Catalyzed Cross-Coupling of Allylboronic Acids with α-Diazoketones. Organic Letters, 2015, 17,<br>4754-4757.                                                                                                    | 4.6  | 23        |
| 49 | Mild Silverâ€Mediated Geminal Difluorination of Styrenes Using an Air―and Moistureâ€Stable<br>Fluoroiodane Reagent. Angewandte Chemie - International Edition, 2014, 53, 12897-12901.                                  | 13.8 | 151       |
| 50 | Allylic sp <sup>3</sup> C–H borylation of alkenes <i>via</i> allyl-Pd intermediates: an efficient route<br>to allylboronates. Chemical Communications, 2014, 50, 9207-9210.                                            | 4.1  | 31        |
| 51 | Stereocontrol in Synthesis of Homoallylic Amines. Syn Selective Direct Allylation of Hydrazones with<br>Allylboronic Acids. Organic Letters, 2014, 16, 3808-3811.                                                      | 4.6  | 31        |
| 52 | Stereoselective allylboration of imines and indoles under mild conditions. An <i>in situ E</i> / <i>Z</i> isomerization of imines by allylboroxines. Chemical Science, 2014, 5, 2732-2738.                             | 7.4  | 54        |
| 53 | Borylation of Propargylic Substrates by Bimetallic Catalysis. Synthesis of Allenyl, Propargylic, and<br>Butadienyl Bpin Derivatives. Journal of the American Chemical Society, 2014, 136, 7563-7566.                   | 13.7 | 95        |
| 54 | Mild Silverâ€Mediated Geminal Difluorination of Styrenes Using an Air―and Moistureâ€Stable<br>Fluoroiodane Reagent. Angewandte Chemie, 2014, 126, 13111-13115.                                                         | 2.0  | 49        |

| #  | Article                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Selective Formation of Adjacent Stereocenters by Allylboration of Ketones under Mild Neutral<br>Conditions. Organic Letters, 2013, 15, 2546-2549.                                                 | 4.6  | 24        |
| 56 | Copper-Mediated Cyanotrifluoromethylation of Styrenes Using the Togni Reagent. Journal of Organic Chemistry, 2013, 78, 11087-11091.                                                               | 3.2  | 109       |
| 57 | Copper-mediated C–H trifluoromethylation of quinones. Chemical Communications, 2013, 49, 6614.                                                                                                    | 4.1  | 87        |
| 58 | Pincer Complexes as Catalysts in Organic Chemistry. Topics in Organometallic Chemistry, 2013, , 203-241.                                                                                          | 0.7  | 57        |
| 59 | Mechanistic Investigation of the Palladium-Catalyzed Synthesis of Allylic Silanes and Boronates from Allylic Alcohols. Journal of the American Chemical Society, 2013, 135, 443-455.              | 13.7 | 74        |
| 60 | Regio- and Stereoselective Allylic Trifluoromethylation and Fluorination using CuCF <sub>3</sub><br>and CuF Reagents. Journal of Organic Chemistry, 2013, 78, 7330-7336.                          | 3.2  | 62        |
| 61 | Trifluoromethylation of Propargylic Halides and Trifluoroacetates Using<br>(Ph <sub>3</sub> P) <sub>3</sub> Cu(CF <sub>3</sub> ) Reagent. Organic Letters, 2012, 14, 3966-3969.                   | 4.6  | 85        |
| 62 | Palladium atalyzed Synthesis and Isolation of Functionalized Allylboronic Acids: Selective, Direct<br>Allylboration of Ketones. Angewandte Chemie - International Edition, 2012, 51, 13050-13053. | 13.8 | 102       |
| 63 | Stereoselective Intermolecular Allylic C–H Trifluoroacetoxylation of Functionalized Alkenes.<br>Journal of the American Chemical Society, 2012, 134, 8778-8781.                                   | 13.7 | 53        |
| 64 | Electrophilic Trifluoromethylation by Copper-Catalyzed Addition of CF <sub>3</sub> -Transfer<br>Reagents to Alkenes and Alkynes. Organic Letters, 2012, 14, 2882-2885.                            | 4.6  | 277       |
| 65 | Palladium-Catalyzed Allylic Câ^'OH Functionalization for Efficient Synthesis of Functionalized Allylsilanes. Journal of the American Chemical Society, 2011, 133, 409-411.                        | 13.7 | 94        |
| 66 | Catalysis by Palladium Pincer Complexes. Chemical Reviews, 2011, 111, 2048-2076.                                                                                                                  | 47.7 | 758       |
| 67 | Palladium-Catalyzed Oxidative Allylic Câ 'H Silylation. Organic Letters, 2011, 13, 1888-1891.                                                                                                     | 4.6  | 65        |
| 68 | Palladium Pincer Complex Catalyzed Funtionalization of Electrophiles. Current Organic Chemistry, 2011, 15, 3389-3414.                                                                             | 1.6  | 20        |
| 69 | Palladium-Catalyzed Selective Acyloxylation Using Sodium Perborate as Oxidant. Journal of Organic Chemistry, 2011, 76, 1503-1506.                                                                 | 3.2  | 51        |
| 70 | Palladium atalyzed Direct Synthesis of Organoboronic Acids. Angewandte Chemie - International<br>Edition, 2011, 50, 8230-8232.                                                                    | 13.8 | 47        |
| 71 | Selective Cĩ£¿H Borylation of Alkenes by Palladium Pincer Complex Catalyzed Oxidative<br>Functionalization. Angewandte Chemie - International Edition, 2010, 49, 4051-4053.                       | 13.8 | 97        |
| 72 | Mechanism of the oxidative addition of hypervalent iodonium salts to palladium(II) pincer-complexesâ~†.<br>Journal of Molecular Catalysis A, 2010, 324, 56-63.                                    | 4.8  | 39        |

| #  | Article                                                                                                                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Mechanism of the Asymmetric Sulfoxidation in the Esomeprazole Process: Effects of the Imidazole<br>Backbone for the Enantioselection. Advanced Synthesis and Catalysis, 2009, 351, 903-919.                                                                                                                                      | 4.3  | 46        |
| 74 | Catalytic Allylic Câ^'H Acetoxylation and Benzoyloxylation via Suggested<br>(Î- <sup>3</sup> -Allyl)palladium(IV) Intermediates. Organic Letters, 2009, 11, 5518-5521.                                                                                                                                                           | 4.6  | 113       |
| 75 | Pincer Complex-Catalyzed Redox Coupling of Alkenes with Iodonium Salts via Presumed Palladium(IV)<br>Intermediates. Organic Letters, 2009, 11, 2852-2854.                                                                                                                                                                        | 4.6  | 88        |
| 76 | Functionalization of Unactivated Alkenes through Iridium-Catalyzed Borylation of Carbonâ^'Hydrogen<br>Bonds. Mechanism and Synthetic Applications. Journal of Organic Chemistry, 2009, 74, 7715-7723.                                                                                                                            | 3.2  | 55        |
| 77 | Synthesis and transformation of organoboronates and stannanes by pincer-complex catalysts. Dalton Transactions, 2009, , 6267.                                                                                                                                                                                                    | 3.3  | 58        |
| 78 | Performance of SCS Palladium Pincer Complexes in Borylation of Allylic Alcohols. Control of the<br>Regioselectivity in the One-Pot Borylationâ^'Allylation Process. Journal of Organic Chemistry, 2009, 74,<br>5695-5698.                                                                                                        | 3.2  | 45        |
| 79 | Catalytic Performance of Symmetrical and Unsymmetrical Sulfurâ€Containing Pincer Complexes:<br>Synthesis and Tandem Catalytic Activity of the First PCSâ€Pincer Palladium Complex. Chemistry - A<br>European Journal, 2008, 14, 4800-4809.                                                                                       | 3.3  | 96        |
| 80 | Synthesis of Stereodefined Substituted Cycloalkenes by a Oneâ€Pot Catalytic<br>Boronation–Allylation–Metathesis Sequence. Advanced Synthesis and Catalysis, 2008, 350, 2045-2051.                                                                                                                                                | 4.3  | 21        |
| 81 | Chiral palladium-pincer complex catalyzed asymmetric condensation of sulfonimines and isocyanoacetate. Tetrahedron: Asymmetry, 2008, 19, 1867-1870.                                                                                                                                                                              | 1.8  | 59        |
| 82 | Single-pot triple catalytic transformations based on coupling of in situ generated allyl boronates with in situ hydrolyzed acetals. Chemical Communications, 2008, , 3420.                                                                                                                                                       | 4.1  | 32        |
| 83 | Palladiumâ^'Pincer Complex Catalyzed Câ^'C Coupling of Allyl Nitriles with Tosyl Imines via<br>Regioselective Allylic Câ^'H Bond Functionalization. Organic Letters, 2008, 10, 2881-2884.                                                                                                                                        | 4.6  | 71        |
| 84 | Stereoselective Pincer-Complex Catalyzed C-H Functionalization of Benzyl Nitriles under Mild Conditions. An Efficient Route to β-Aminonitriles. Organic Letters, 2008, 10, 5175-5178.                                                                                                                                            | 4.6  | 70        |
| 85 | Synthesis of Allylsilanes and Dienylsilanes by a One-Pot Catalytic Câ^'H Borylationâ^'Suzukiâ^'Miyaura<br>Coupling Sequence. Organic Letters, 2008, 10, 3129-3131.                                                                                                                                                               | 4.6  | 44        |
| 86 | Direct Synthesis of Functionalized Allylic Boronic Esters from Allylic Alcohols and Inexpensive Reagents and Catalysts. Synthesis, 2008, 2008, 2293-2297.                                                                                                                                                                        | 2.3  | 15        |
| 87 | Synthesis and Catalytic Application of Chiral 1,1â€~-Bi-2-naphthol- and Biphenanthrol-Based Pincer<br>Complexes:Â Selective Allylation of Sulfonimines with Allyl Stannane and Allyl Trifluoroborate.<br>Journal of Organic Chemistry, 2007, 72, 4689-4697.                                                                      | 3.2  | 126       |
| 88 | Petasis Borono-Mannich Reaction and Allylation of Carbonyl Compounds via Transient Allyl<br>Boronates Generated by Palladium-Catalyzed Substitution of Allyl Alcohols. An Efficient One-Pot<br>Route to Stereodefined α-Amino Acids and Homoallyl Alcohols. Journal of the American Chemical<br>Society, 2007, 129, 13723-13731. | 13.7 | 125       |
| 89 | Factors influencing the selectivity in asymmetric oxidation of sulfides attached to nitrogen containing heterocycles. Chemical Communications, 2007, , 2187.                                                                                                                                                                     | 4.1  | 19        |
| 90 | Selective Oneâ€Pot Carbon–Carbon Bond Formation by Catalytic Boronation of Unactivated<br>Cycloalkenes and Subsequent Coupling. Angewandte Chemie - International Edition, 2007, 46, 6891-6893.                                                                                                                                  | 13.8 | 101       |

| #   | Article                                                                                                                                                                                                                                                               | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Palladium Pincer Complex atalyzed Condensation of Sulfonimines and Isocyanoacetate to Imidazoline<br>Derivatives. Dependence of the Stereoselectivity on the Ligand Effects. Advanced Synthesis and<br>Catalysis, 2007, 349, 2585-2594.                               | 4.3  | 54        |
| 92  | Application of iridium pincer complexes in hydrogen isotope exchange reactions. Journal of Organometallic Chemistry, 2007, 692, 5529-5531.                                                                                                                            | 1.8  | 12        |
| 93  | Palladium-Catalyzed Coupling of Allylboronic Acids with Iodobenzenes. Selective Formation of the<br>Branched Allylic Product in the Absence of Directing Groups. Journal of the American Chemical<br>Society, 2006, 128, 8150-8151.                                   | 13.7 | 128       |
| 94  | Direct Boronation of Allyl Alcohols with Diboronic Acid Using Palladium Pincer-Complex Catalysis. A<br>Remarkably Facile Allylic Displacement of the Hydroxy Group under Mild Reaction Conditions. Journal<br>of the American Chemical Society, 2006, 128, 4588-4589. | 13.7 | 139       |
| 95  | Synthesis of new chiral pincer-complex catalysts for asymmetric allylation of sulfonimines.<br>Inorganica Chimica Acta, 2006, 359, 1767-1772.                                                                                                                         | 2.4  | 75        |
| 96  | Synthesis and structural features of α-acyloxy-(η3-allyl)palladium complexes. Journal of Organometallic<br>Chemistry, 2006, 691, 3640-3645.                                                                                                                           | 1.8  | 2         |
| 97  | Strategies for fine-tuning the catalytic activity of pincer-complexes. Tetrahedron Letters, 2006, 47, 8999-9001.                                                                                                                                                      | 1.4  | 32        |
| 98  | Regio- and Stereoselective Palladium-Pincer Complex Catalyzed Allylation of Sulfonylimines with<br>Trifluoro(allyl)borates and Allylstannanes: A Combined Experimental and Theoretical Study.<br>Chemistry - A European Journal, 2006, 12, 6976-6983.                 | 3.3  | 50        |
| 99  | Highly Selective and Robust Palladium-Catalyzed Carbon–Carbon Coupling between Allyl Alcohols<br>and Aldehydes via Transient Allylboronic Acids. European Journal of Organic Chemistry, 2006, 2006,<br>4085-4087.                                                     | 2.4  | 51        |
| 100 | Palladium-Pincer-Complex-Catalyzed Transformations Involving ÂOrganometallic Species. Synlett, 2006, 2006, 811-824.                                                                                                                                                   | 1.8  | 129       |
| 101 | Allylation of Aldehyde and Imine Substrates with In Situ Generated Allylboronates - A Simple Route to<br>Enatioenriched Homoallyl Alcohols. European Journal of Organic Chemistry, 2005, 2005, 2539-2547.                                                             | 2.4  | 41        |
| 102 | Palladium Pincer Complex Catalyzed Cross-Coupling of Vinyl Epoxides and Aziridines with Organoboronic Acids. Chemistry - A European Journal, 2005, 11, 5260-5268.                                                                                                     | 3.3  | 84        |
| 103 | Palladium Pincer Complex Catalyzed Stannyl and Silyl Transfer to Propargylic Substrates: Synthetic<br>Scope and Mechanism ChemInform, 2005, 36, no.                                                                                                                   | 0.0  | Ο         |
| 104 | Palladium Pincer Complex Catalyzed Allylation of Tosylimines by Potassium Trifluoro(allyl)borates<br>ChemInform, 2005, 36, no.                                                                                                                                        | 0.0  | 0         |
| 105 | Allylation of Aldehyde and Imine Substrates with in situ Generated Allylboronates — A Simple Route to<br>Enantioenriched Homoallyl Alcohols ChemInform, 2005, 36, no.                                                                                                 | 0.0  | Ο         |
| 106 | Palladium Pincer Complex Catalyzed Substitution of Vinyl Cyclopropanes, Vinyl Aziridines, and Allyl<br>Acetates with Tetrahydroxydiboron. An Efficient Route to Functionalized Allylboronic Acids and<br>Potassium Trifluoro(allyl)borates ChemInform, 2005, 36, no.  | 0.0  | 0         |
| 107 | Palladium Pincer-Complex Catalyzed Allylation of Tosylimines by Potassium Trifluoro(allyl)borates.<br>Organic Letters, 2005, 7, 689-691.                                                                                                                              | 4.6  | 103       |
| 108 | Employment of Palladium Pincer-Complexes in Phenylselenylation of Organohalides. Journal of Organic Chemistry, 2005, 70, 9215-9221.                                                                                                                                   | 3.2  | 41        |

| #   | Article                                                                                                                                                                                                                                                                                                       | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Palladium Pincer Complex Catalyzed Substitution of Vinyl Cyclopropanes, Vinyl Aziridines, and Allyl<br>Acetates with Tetrahydroxydiboron. An Efficient Route to Functionalized Allylboronic Acids and<br>Potassium Trifluoro(allyl)borates. Journal of the American Chemical Society, 2005, 127, 10478-10479. | 13.7 | 140       |
| 110 | Palladium Pincer Complex Catalyzed Stannyl and Silyl Transfer to Propargylic Substrates:Â Synthetic<br>Scope and Mechanism. Journal of the American Chemical Society, 2005, 127, 1787-1796.                                                                                                                   | 13.7 | 90        |
| 111 | Palladium Pincer Complex-Catalyzed Trimethyltin Substitution of Functionalized Propargylic<br>Substrates. An Efficient Route to Propargyl- and Allenyl-Stannanes ChemInform, 2004, 35, no.                                                                                                                    | 0.0  | 0         |
| 112 | Palladium Pincer Complex Catalyzed Allylic Stannylation with Hexaalkylditin Reagents ChemInform, 2004, 35, no.                                                                                                                                                                                                | 0.0  | 0         |
| 113 | Palladium-Catalyzed Electrophilic Allylation Reactions via Bis(allyl)palladium Complexes and Related<br>Intermediates. Chemistry - A European Journal, 2004, 10, 5268-5275.                                                                                                                                   | 3.3  | 75        |
| 114 | Palladium Pincer Complex-Catalyzed Allylic Stannylation with Hexaalkylditin Reagents. Organic<br>Letters, 2004, 6, 1829-1831.                                                                                                                                                                                 | 4.6  | 90        |
| 115 | Palladium Pincer Complex-Catalyzed Trimethyltin Substitution of Functionalized Propargylic<br>Substrates. An Efficient Route to Propargyl- and Allenyl-Stannanes. Journal of the American Chemical<br>Society, 2004, 126, 474-475.                                                                            | 13.7 | 76        |
| 116 | Pincer Complex-Catalyzed Allylation of Aldehyde and Imine Substrates via Nucleophilic η1-Allyl<br>Palladium Intermediates. Journal of the American Chemical Society, 2004, 126, 7026-7033.                                                                                                                    | 13.7 | 163       |
| 117 | Palladium-Catalyzed Electrophilic Substitution of Allyl Chlorides and Acetates via Bis-allylpalladium<br>Intermediates ChemInform, 2003, 34, no.                                                                                                                                                              | 0.0  | 0         |
| 118 | Palladium-Catalyzed Electrophilic Substitution via Monoallylpalladium Intermediates ChemInform, 2003, 34, no.                                                                                                                                                                                                 | 0.0  | 0         |
| 119 | Palladium-Catalyzed Coupling of Allyl Acetates with Aldehyde and Imine Electrophiles in the Presence of Bis(pinacolato)diboron ChemInform, 2003, 34, no.                                                                                                                                                      | 0.0  | 0         |
| 120 | Origin of the Regio- and Stereoselectivity in Palladium-Catalyzed Electrophilic Substitution via<br>Bis(allyl)palladium Complexes ChemInform, 2003, 34, no.                                                                                                                                                   | 0.0  | 0         |
| 121 | Origin of the Regio- and Stereoselectivity in Palladium-Catalyzed Electrophilic Substitution via<br>Bis(allyl)palladium Complexes. Chemistry - A European Journal, 2003, 9, 4025-4030.                                                                                                                        | 3.3  | 29        |
| 122 | Palladium-Catalyzed Electrophilic Substitution via Monoallylpalladium Intermediates. Angewandte<br>Chemie - International Edition, 2003, 42, 3656-3658.                                                                                                                                                       | 13.8 | 102       |
| 123 | Palladium-Catalyzed Electrophilic Substitution of Allyl Chlorides and Acetates via Bis-allylpalladium<br>Intermediates. Journal of Organic Chemistry, 2003, 68, 2934-2943.                                                                                                                                    | 3.2  | 62        |
| 124 | Palladium-Catalyzed Coupling of Allyl Acetates with Aldehyde and Imine Electrophiles in the Presence of Bis(pinacolato)diboron. Organic Letters, 2003, 5, 3065-3068.                                                                                                                                          | 4.6  | 67        |
| 125 | Mechanism of the Stereoselective Alkyl Group Exchange between Alkylboranes and Alkylzinc<br>Compounds. Quest for Novel Types of Boronâ~'Metal Exchange Reactions. Organometallics, 2002, 21,<br>2203-2207.                                                                                                    | 2.3  | 25        |
| 126 | Regioselective Palladium-Catalyzed Electrophilic Allylic Substitution in the Presence of<br>Hexamethylditin. Organic Letters, 2002, 4, 1563-1566.                                                                                                                                                             | 4.6  | 31        |

| #   | Article                                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Synthesis of stereodefined vinyl-tetrahydropyran and vinyl-octahydrochromene derivatives via<br>acetalization–cyclization of allylsilanes with aldehydes. Origin of the high stereoselectivity.<br>Tetrahedron Letters, 2002, 43, 1123-1126.   | 1.4  | 21        |
| 128 | Nature of the interaction between β-substituents and the allyl moiety in (η3-allyl)palladium complexes.<br>Chemical Society Reviews, 2001, 30, 136-143.                                                                                        | 38.1 | 42        |
| 129 | Control of the Regioselectivity in Catalytic Transformations Involving Amphiphilic Bis-allylpalladium<br>Intermediates:Â Mechanism and Synthetic Applications. Journal of Organic Chemistry, 2001, 66, 1686-1693.                              | 3.2  | 50        |
| 130 | Palladium-Catalyzed Tandem Bis-allylation of Isocyanates. Organic Letters, 2001, 3, 909-912.                                                                                                                                                   | 4.6  | 43        |
| 131 | Mechanism of the η3â~'η1â~'η3Isomerization in Allylpalladium Complexes: Solvent Coordination, Ligand, and<br>Substituent Effects. Organometallics, 2001, 20, 5464-5471.                                                                        | 2.3  | 77        |
| 132 | Palladium-Catalyzed Cyclization of Allylsilanes with Nucleophilic Displacement of the Silyl Group.<br>Chemistry - A European Journal, 2001, 7, 4097-4106.                                                                                      | 3.3  | 31        |
| 133 | Asymmetric Allyl-Metal Bonding in Substituted (η3-Allyl)palladium Complexes: X-ray Structures ofcis-<br>andtrans-4-Acetoxy-[η3-(1,2,3)-cyclohexenyl]palladium Chloride Dimers. Chemistry - A European Journal,<br>2000, 6, 432-436.            | 3.3  | 28        |
| 134 | Umpolung of the reactivity of allylsilanes. Palladium(II) catalyzed cyclization of allylsilyl alcohols: a new route to substituted 2-vinyltetrahydrofurans. Tetrahedron Letters, 2000, 41, 1119-1122.                                          | 1.4  | 17        |
| 135 | Umpolung of the Allylpalladium Reactivity: Mechanism and Regioselectivity of the Electrophilic Attack<br>on Bis-Allylpalladium Complexes Formed in Palladium-Catalyzed Transformations. Chemistry - A<br>European Journal, 2000, 6, 4413-4421. | 3.3  | 46        |
| 136 | Regioselective Catalytic Transformations Involving β-Silyl-Substituted (η3-Allyl)palladium Complexes: An<br>Efficient Route to Functionalized Allylsilanes. Journal of Organic Chemistry, 1999, 64, 9547-9556.                                 | 3.2  | 47        |
| 137 | Nature of the Interactions between the β-Silyl Substituent and Allyl Moiety in (η3-Allyl)palladium<br>Complexes. A Combined Experimental and Theoretical Study. Organometallics, 1999, 18, 701-708.                                            | 2.3  | 20        |
| 138 | Effects of polar Î <sup>3</sup> -substituents on the structure and stability of palladacyclobutane complexes.<br>Computational and Theoretical Chemistry, 1998, 455, 205-211.                                                                  | 1.5  | 5         |
| 139 | Unsymmetrical functionalization of 1,3-cyclohexadienes: Palladium-catalyzed stereoselective 1,4-acyloxy-alkoxylation. Tetrahedron, 1998, 54, 5375-5384.                                                                                        | 1.9  | 16        |
| 140 | α-(Phenylselenenyl) ketones—structure, molecular modelling and rationalization of their glutathione<br>peroxidase-like activity. Journal of Molecular Structure, 1998, 448, 21-28.                                                             | 3.6  | 9         |
| 141 | Copper(II) mediated regioselective acetoxylation of allylic acetates and 1,4-diacetoxylation of alkenes.<br>Tetrahedron Letters, 1998, 39, 6345-6348.                                                                                          | 1.4  | 20        |
| 142 | Benzoquinone-Induced Stereoselective Chloride Migration in (η3-Allyl)palladium Complexes. A<br>Theoretical Mechanistic Study Complemented by Experimental Verification. Organometallics, 1998, 17,<br>1677-1686.                               | 2.3  | 42        |
| 143 | Palladium-Catalyzed 1,4-Acetoxy-Trifluoroacetoxylation and 1,4-Alkoxy-Trifluoroacetoxylation of Cyclic 1,3-Dienes. Scope and Mechanism. Journal of Organic Chemistry, 1998, 63, 2523-2529.                                                     | 3.2  | 31        |
| 144 | Stereoelectronic Control on the Kinetic Stability of β-Acetoxy-Substituted (η3-Allyl)palladium<br>Complexes in a Mild Acidic Medium. Organometallics, 1997, 16, 3779-3785.                                                                     | 2.3  | 26        |

| #   | Article                                                                                                                                                                                                                                                          | IF      | CITATIONS         |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|
| 145 | The Tris(9-borabicyclo[3.3.1]nonyl)silylium Cation:Â A Suggestion for a Weakly Coordinated Silylium<br>Cation in Solution. Organometallics, 1997, 16, 2377-2385.                                                                                                 | 2.3     | 16                |
| 146 | Central versus Terminal Attack in Nucleophilic Addition to (ï€-Allyl)palladium Complexes. Ligand<br>Effects and Mechanism. Organometallics, 1997, 16, 1058-1064.                                                                                                 | 2.3     | 76                |
| 147 | Nature of the Interactions between Polar β‣ubstituents and Palladium in η <sup>3</sup> â€Allylpalladium<br>Complexes—A Combined Experimental and Theoretical Study. Chemistry - A European Journal, 1997, 3,<br>592-600.                                         | 3.3     | 33                |
| 148 | Effects of β-Substituents and Ancillary Ligands on the Structure and Stability of (η3-Allyl)palladium<br>Complexes. Implications for the Regioselectivity in Nucleophilic Addition Reactions. Journal of the<br>American Chemical Society, 1996, 118, 7818-7826. | 13.7    | 51                |
| 149 | Trishomocyclopropenylium Cations. Structure, Stability, Magnetic Properties, and Rearrangement<br>Possibilities. Journal of Organic Chemistry, 1996, 61, 2783-2800.                                                                                              | 3.2     | 38                |
| 150 | Effects of the Ancillary Ligands on Palladiumâ^'Carbon Bonding in (η3â^'Allyl)palladium Complexes.<br>Implications for Nucleophilic Attack at the Allylic Carbons. Organometallics, 1996, 15, 1128-1133.                                                         | 2.3     | 59                |
| 151 | Nucleophile Addition an (ï€â€Allyl)palladiumâ€Komplexe: Steuerung des Angriffs am zentralen oder an den<br>terminalen Kohlenstoffatomen durch Liganden. Angewandte Chemie, 1995, 107, 2767-2769.                                                                 | 2.0     | 4                 |
| 152 | Nucleophilic Attack on(Ï€-Allyl)palladium Complexes: Direction of the Attack to the Central or<br>Terminal Carbon Atom by Ligand Control. Angewandte Chemie International Edition in English, 1995,<br>34, 2551-2553.                                            | 4.4     | 53                |
| 153 | Route to a Kinetically Stabilized Protonated Spirocyclopentane with a Pentacoordinated Carbon<br>Atom. The Missing Link between Bicyclo[3.2.0]hept-3-yl and 7-Norbornyl Cation. Journal of Organic<br>Chemistry, 1995, 60, 2257-2259.                            | 3.2     | 11                |
| 154 | Direct bromination of dithieno[3,4-b:3′,4′-d]pyridine and dithieno[2,3-b:3′,2′-d]pyridine. Journal of<br>Heterocyclic Chemistry, 1993, 30, 543-544.                                                                                                              | 2.6     | 7                 |
| 155 | Nitration of dithieno[3,2â€ <i>b</i> :3′,2′â€ <i>d</i> ]pyridine and dithieno[3,2â€ <i>b</i> :3′,4′â€ <i>d<br/>Journal of Heterocyclic Chemistry, 1993, 30, 561-562.</i>                                                                                         | jpyridi | ine <sub>10</sub> |
| 156 | 15N-CIDNP measurements and ab initio calculations on the nitration of dithieno[3,4-b:3′,4′-d]pyridine<br>N-oxide. Journal of the Chemical Society Perkin Transactions II, 1992, , 1875-1878.                                                                     | 0.9     | 5                 |
| 157 | Theoretical study on mechanism and selectivity of electrophilic aromatic nitration. Journal of the American Chemical Society, 1992, 114, 6827-6834.                                                                                                              | 13.7    | 37                |
| 158 | Experimental and theoretical study of the orientation in lithiation of dithieno[2,3-b:3',2'-d]pyridine.<br>Journal of Organic Chemistry, 1992, 57, 4552-4555.                                                                                                    | 3.2     | 7                 |
| 159 | Orientation effects in the nitration of the dithieno[ <i>b,d</i> ]pyridine <i>N</i> â€oxides. Its dependence<br>on acidity of the reaction medium. Journal of Heterocyclic Chemistry, 1992, 29, 1635-1640.                                                       | 2.6     | 5                 |
| 160 | Theoretical study on the nitration of pyridine: comparison with electrophilic substitution of dithieno[3,4-b:3',4'-d]pyridine. Computational and Theoretical Chemistry, 1992, 258, 53-65.                                                                        | 1.5     | 2                 |
| 161 | Theoretical study of orientation in the nitration of dithieno[2,3-b:3',2'-d] pyridine. Computational and Theoretical Chemistry, 1992, 258, 67-82.                                                                                                                | 1.5     | 11                |
| 162 | Experimental and theoretical study of orientation in the nitration of dithieno[3,4-b:3',4'-d]pyridine.<br>Journal of Organic Chemistry, 1991, 56, 1590-1596.                                                                                                     | 3.2     | 19                |

| #   | Article                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Nitration of dithieno[3,4-b:3′,2′-d]pyridine and dithieno[2,3-b:3′,2′-d]pyridine. Journal of Heterocyclic Chemistry, 1991, 28, 351-352.                  | 2.6 | 12        |
| 164 | Investigation of heteroaromatic nucleophilic substitution reaction. Computational and Theoretical Chemistry, 1990, 204, 45-56.                           | 1.5 | 4         |
| 165 | Synthesis of new heterocyclic ring systems via nucleophilic subsititution of pyrimido [4,5-d] pyridazines. Tetrahedron, 1989, 45, 4485-4496.             | 1.9 | 9         |
| 166 | Structures of sigma complexes in nitration reactions of monosubstituted benzene derivatives.<br>Computational and Theoretical Chemistry, 1988, 181, 1-9. | 1.5 | 5         |