
Kathleen E Cullen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6868415/publications.pdf Version: 2024-02-01

KATHLEEN F CHLLEN

#	Article	IF	CITATIONS
1	Context-independent encoding of passive and active self-motion in vestibular afferent fibers during locomotion in primates. Nature Communications, 2022, 13, 120.	12.8	8
2	Distinct representations of body and head motion are dynamically encoded by Purkinje cell populations in the macaque cerebellum. ELife, 2022, 11, .	6.0	12
3	Sensory adaptation mediates efficient and unambiguous encoding of natural stimuli by vestibular thalamocortical pathways. Nature Communications, 2022, 13, 2612.	12.8	8
4	Comparator, The. , 2022, , 1584-1587.		0
5	Reafference Principle, The. , 2022, , 5883-5885.		0
6	Head movement kinematics are altered during gaze stability exercises in vestibular schwannoma patients. Scientific Reports, 2021, 11, 7139.	3.3	6
7	Loss of peripheral vestibular input alters the statistics of head movement experienced during natural selfâ€motion. Journal of Physiology, 2021, 599, 2239-2254.	2.9	12
8	Proprioception and the predictive sensing of active self-motion. Current Opinion in Physiology, 2021, 20, 29-38.	1.8	19
9	Differences in the Structure and Function of the Vestibular Efferent System Among Vertebrates. Frontiers in Neuroscience, 2021, 15, 684800.	2.8	11
10	Continuous Head Motion is a Greater Motor Control Challenge than Transient Head Motion in Patients with Loss of Vestibular Function. Neurorehabilitation and Neural Repair, 2021, 35, 890-902.	2.9	5
11	The neural basis for violations of Weber's law in self-motion perception. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
12	Effects of vestibular neurectomy and neural compensation on head movements in patients undergoing vestibular schwannoma resection. Scientific Reports, 2021, 11, 517.	3.3	17
13	Challenges to the Vestibular System in Space: How the Brain Responds and Adapts to Microgravity. Frontiers in Neural Circuits, 2021, 15, 760313.	2.8	28
14	Loss of α-9 Nicotinic Acetylcholine Receptor Subunit Predominantly Results in Impaired Postural Stability Rather Than Gaze Stability. Frontiers in Cellular Neuroscience, 2021, 15, 799752.	3.7	3
15	Retinoic acid degradation shapes zonal development of vestibular organs and sensitivity to transient linear accelerations. Nature Communications, 2020, 11, 63.	12.8	43
16	Reflections on the past two decades of neuroscience. Nature Reviews Neuroscience, 2020, 21, 524-534.	10.2	35
17	Neural Mechanisms Underlying High-Frequency Vestibulocollic Reflexes In Humans And Monkeys. Journal of Neuroscience, 2020, 40, 1874-1887.	3.6	18
18	Predictive coding in early vestibular pathways: Implications for vestibular cognition. Cognitive Neuropsychology, 2020, 37, 423-426.	1.1	5

#	Article	IF	CITATIONS
19	Neural variability determines coding strategies for natural self-motion in macaque monkeys. ELife, 2020, 9, .	6.0	13
20	Information Processing in the Vestibular System. , 2020, , 38-54.		0
21	The Processing of Predictable Versus Unpredictable Motion Signals During Natural Self-Motion. , 2020, , 483-495.		1
22	Cerebellar Prediction of the Dynamic Sensory Consequences of Gravity. Current Biology, 2019, 29, 2698-2710.e4.	3.9	33
23	Predictive Sensing: The Role of Motor Signals in Sensory Processing. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2019, 4, 842-850.	1.5	35
24	Neural substrates, dynamics and thresholds of galvanic vestibular stimulation in the behaving primate. Nature Communications, 2019, 10, 1904.	12.8	76
25	Vestibular processing during natural self-motion: implications for perception and action. Nature Reviews Neuroscience, 2019, 20, 346-363.	10.2	151
26	Negative optokinetic afternystagmus in larval zebrafish demonstrates set-point adaptation. Scientific Reports, 2019, 9, 19039.	3.3	4
27	The Ventral Posterior Lateral Thalamus Preferentially Encodes Externally Applied Versus Active Movement: Implications for Self-Motion Perception. Cerebral Cortex, 2019, 29, 305-318.	2.9	34
28	Coding strategies in the otolith system differ for translational head motion vs. static orientation relative to gravity. ELife, 2019, 8, .	6.0	39
29	The Comparator. , 2019, , 1-4.		0
30	Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways. ELife, 2018, 7, .	6.0	28
31	The Reafference Principle. , 2018, , 1-3.		1
32	Prediction during self-motion: the primate cerebellum selectively encodes unexpected vestibular information. Journal of Vision, 2018, 18, 1359.	0.3	0
33	The statistics of the vestibular input experienced during natural selfâ€motion differ between rodents and primates. Journal of Physiology, 2017, 595, 2751-2766.	2.9	62
34	Plasticity within excitatory and inhibitory pathways of the vestibulo-spinal circuitry guides changes in motor performance. Scientific Reports, 2017, 7, 853.	3.3	24
35	Our sense of direction: progress, controversies and challenges. Nature Neuroscience, 2017, 20, 1465-1473.	14.8	154
36	Building Bridges through Science. Neuron, 2017, 96, 730-735.	8.1	2

#	Article	IF	CITATIONS
37	Vestibular System â~†. , 2017, , .		2
38	Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing. PLoS ONE, 2017, 12, e0178664.	2.5	36
39	Procedural Learning: VOR â ⁻ †. , 2017, , 357-374.		10
40	Plasticity within non-cerebellar pathways rapidly shapes motor performance in vivo. Nature Communications, 2016, 7, 11238.	12.8	33
41	Vestibular animal models: contributions to understanding physiology and disease. Journal of Neurology, 2016, 263, 10-23.	3.6	58
42	Physiology of central pathways. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 137, 17-40.	1.8	48
43	Visuomotor Integration. , 2016, , 961-1005.		0
44	Self-motion evokes precise spike timing in the primate vestibular system. Nature Communications, 2016, 7, 13229.	12.8	36
45	4-aminopyridine reverses ataxia and cerebellar firing deficiency in a mouse model of spinocerebellar ataxia type 6. Scientific Reports, 2016, 6, 29489.	3.3	82
46	Rapid adaptation of multisensory integration in vestibular pathways. Frontiers in Systems Neuroscience, 2015, 9, 59.	2.5	48
47	The Increased Sensitivity of Irregular Peripheral Canal and Otolith Vestibular Afferents Optimizes their Encoding of Natural Stimuli. Journal of Neuroscience, 2015, 35, 5522-5536.	3.6	41
48	Neural Circuits That Drive Binocular Eye Movements: Implications for Understanding and Correcting Strabismus. Investigative Ophthalmology and Visual Science, 2015, 56, 20-20.	3.3	4
49	Integration of Canal and Otolith Inputs by Central Vestibular Neurons Is Subadditive for Both Active and Passive Self-Motion: Implication for Perception. Journal of Neuroscience, 2015, 35, 3555-3565.	3.6	49
50	Vestibular System. , 2015, , 63-69.		1
51	Vestibulo-Ocular Reflex, Adaptation of the. , 2015, , 70-74.		0
52	Histopathologic Changes of the Inner ear in Rhesus Monkeys After Intratympanic Gentamicin Injection and Vestibular Prosthesis Electrode Array Implantation. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 373-387.	1.8	31
53	Neural Correlates of Sensory Prediction Errors in Monkeys: Evidence for Internal Models of Voluntary Self-Motion in the Cerebellum. Cerebellum, 2015, 14, 31-34.	2.5	41
54	Consensus Paper: The Role of the Cerebellum in Perceptual Processes. Cerebellum, 2015, 14, 197-220.	2.5	355

#	Article	IF	CITATIONS
55	Local Population Synchrony and the Encoding of Eye Position in the Primate Neural Integrator. Journal of Neuroscience, 2015, 35, 4287-4295.	3.6	15
56	Coding of envelopes by correlated but not single-neuron activity requires neural variability. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4791-4796.	7.1	40
57	Learning to expect the unexpected: rapid updating in primate cerebellum during voluntary self-motion. Nature Neuroscience, 2015, 18, 1310-1317.	14.8	170
58	Loss of Â-Calcitonin Gene-Related Peptide (ÂCGRP) Reduces the Efficacy of the Vestibulo-ocular Reflex (VOR). Journal of Neuroscience, 2014, 34, 10453-10458.	3.6	52
59	Consulting the vestibular system is simply a must if you want to optimize gaze shifts. Brain, 2014, 137, 978-980.	7.6	1
60	Neuronal detection thresholds during vestibular compensation: contributions of response variability and sensory substitution. Journal of Physiology, 2014, 592, 1565-1580.	2.9	45
61	Early vestibular processing does not discriminate active from passive self-motion if there is a discrepancy between predicted and actual proprioceptive feedback. Journal of Neurophysiology, 2014, 111, 2465-2478.	1.8	44
62	Brainstem processing of vestibular sensory exafference: implications for motion sickness etiology. Experimental Brain Research, 2014, 232, 2483-2492.	1.5	71
63	Statistics of the Vestibular Input Experienced during Natural Self-Motion: Implications for Neural Processing. Journal of Neuroscience, 2014, 34, 8347-8357.	3.6	98
64	Head Movements in Patients with Vestibular Lesion. Otology and Neurotology, 2014, 35, e348-e357.	1.3	26
65	The neural encoding of self-generated and externally applied movement: implications for the perception of self-motion and spatial memory. Frontiers in Integrative Neuroscience, 2014, 7, 108.	2.1	40
66	Visuomotor Integration. , 2013, , 839-882.		1
67	The Primate Cerebellum Selectively Encodes Unexpected Self-Motion. Current Biology, 2013, 23, 947-955.	3.9	118
68	Strong Correlations between Sensitivity and Variability Give Rise to Constant Discrimination Thresholds across the Otolith Afferent Population. Journal of Neuroscience, 2013, 33, 11302-11313.	3.6	38
69	Multimodal Integration of Self-Motion Cues in the Vestibular System: Active versus Passive Translations. Journal of Neuroscience, 2013, 33, 19555-19566.	3.6	66
70	Vergence Neurons Identified in the Rostral Superior Colliculus Code Smooth Eye Movements in 3D Space. Journal of Neuroscience, 2013, 33, 7274-7284.	3.6	47
71	Multisensory integration in early vestibular processing in mice: the encoding of passive vs. active motion. Journal of Neurophysiology, 2013, 110, 2704-2717.	1.8	45
72	The nucleus prepositus predominantly outputs eye movement-related information during passive and active self-motion. Journal of Neurophysiology, 2013, 109, 1900-1911.	1.8	31

#	Article	IF	CITATIONS
73	Head Movements Evoked in Alert Rhesus Monkey by Vestibular Prosthesis Stimulation: Implications for Postural and Gaze Stabilization. PLoS ONE, 2013, 8, e78767.	2.5	37
74	The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion. PLoS Biology, 2012, 10, e1001365.	5.6	51
75	Coding of Microsaccades in Three-Dimensional Space by Premotor Saccadic Neurons. Journal of Neuroscience, 2012, 32, 1974-1980.	3.6	38
76	Neural Correlates of Sensory Substitution in Vestibular Pathways following Complete Vestibular Loss. Journal of Neuroscience, 2012, 32, 14685-14695.	3.6	78
77	The vestibular system: multimodal integration and encoding of self-motion for motor control. Trends in Neurosciences, 2012, 35, 185-196.	8.6	453
78	The Vestibular System in Everyday Life. , 2012, , 2-20.		19
79	Information transmission and detection thresholds in the vestibular nuclei: single neurons vs. population encoding. Journal of Neurophysiology, 2011, 105, 1798-1814.	1.8	66
80	The neural control of fast vs. slow vergence eye movements. European Journal of Neuroscience, 2011, 33, 2147-2154.	2.6	60
81	The neural encoding of self-motion. Current Opinion in Neurobiology, 2011, 21, 587-595.	4.2	72
82	Internal models of self-motion: computations that suppress vestibular reafference in early vestibular processing. Experimental Brain Research, 2011, 210, 377-388.	1.5	67
83	Cross-axis adaptation improves 3D vestibulo-ocular reflex alignment during chronic stimulation via a head-mounted multichannel vestibular prosthesis. Experimental Brain Research, 2011, 210, 595-606.	1.5	49
84	Vestibular control of the head: possible functions of the vestibulocollic reflex. Experimental Brain Research, 2011, 210, 331-345.	1.5	102
85	Multimodal Integration After Unilateral Labyrinthine Lesion: Single Vestibular Nuclei Neuron Responses and Implications for Postural Compensation. Journal of Neurophysiology, 2011, 105, 661-673.	1.8	72
86	In vivo Conditions Induce Faithful Encoding of Stimuli by Reducing Nonlinear Synchronization in Vestibular Sensory Neurons. PLoS Computational Biology, 2011, 7, e1002120.	3.2	14
87	Neural substrates underlying vestibular compensation: Contribution of peripheral versus central processing. Journal of Vestibular Research: Equilibrium and Orientation, 2010, 19, 171-182.	2.0	75
88	Local Neural Processing and the Generation of Dynamic Motor Commands within the Saccadic Premotor Network. Journal of Neuroscience, 2010, 30, 10905-10917.	3.6	11
89	Neural Correlates of Motor Learning in the Vestibulo-Ocular Reflex: Dynamic Regulation of Multimodal Integration in the Macaque Vestibular System. Journal of Neuroscience, 2010, 30, 10158-10168.	3.6	75
90	Dynamic Characterization of Agonist and Antagonist Oculomotoneurons During Conjugate and Disconjugate Eye Movements. Journal of Neurophysiology, 2009, 102, 28-40.	1.8	25

#	Article	IF	CITATIONS
91	Multimodal Integration in Rostral Fastigial Nucleus Provides an Estimate of Body Movement. Journal of Neuroscience, 2009, 29, 10499-10511.	3.6	94
92	Response of Vestibular Nerve Afferents Innervating Utricle and Saccule During Passive and Active Translations. Journal of Neurophysiology, 2009, 101, 141-149.	1.8	88
93	Different neural strategies for multimodal integration: comparison of two macaque monkey species. Experimental Brain Research, 2009, 195, 45-57.	1.5	37
94	How Actions Alter Sensory Processing. Annals of the New York Academy of Sciences, 2009, 1164, 29-36.	3.8	20
95	VOR Suppression. , 2009, , 4378-4386.		1
96	Efferent-Mediated Responses in Vestibular Nerve Afferents of the Alert Macaque. Journal of Neurophysiology, 2009, 101, 988-1001.	1.8	51
97	Effects of Canal Plugging on the Vestibuloocular Reflex and Vestibular Nerve Discharge During Passive and Active Head Rotations. Journal of Neurophysiology, 2009, 102, 2693-2703.	1.8	35
98	An improved method for the estimation of firing rate dynamics using an optimal digital filter. Journal of Neuroscience Methods, 2008, 173, 165-181.	2.5	38
99	Vestibular System: The Many Facets of a Multimodal Sense. Annual Review of Neuroscience, 2008, 31, 125-150.	10.7	729
100	Acceleration. , 2008, , 4-4.		0
101	Neuronal evidence for individual eye control in the primate cMRF. Progress in Brain Research, 2008, 171, 143-150.	1.4	37
102	The Brain Stem Saccadic Burst Generator Encodes Gaze in Three-Dimensional Space. Journal of Neurophysiology, 2008, 99, 2602-2616.	1.8	40
103	Dynamic Coding of Vertical Facilitated Vergence by Premotor Saccadic Burst Neurons. Journal of Neurophysiology, 2008, 100, 1967-1982.	1.8	25
104	Neural Variability, Detection Thresholds, and Information Transmission in the Vestibular System. Journal of Neuroscience, 2007, 27, 771-781.	3.6	217
105	Response of Vestibular-Nerve Afferents to Active and Passive Rotations Under Normal Conditions and After Unilateral Labyrinthectomy. Journal of Neurophysiology, 2007, 97, 1503-1514.	1.8	146
106	Eye, Head, and Body Coordination During Large Gaze Shifts in Rhesus Monkeys: Movement Kinematics and the Influence of Posture. Journal of Neurophysiology, 2007, 97, 2976-2991.	1.8	48
107	Vestibular compensation after unilateral labyrinthectomy: normal versus cerebellar dysfunctional mice. The Journal of Otolaryngology Supplement, 2007, 36, 315-21.	0.1	8
108	Spatial characteristics of neurons in the central mesencephalic reticular formation (cMRF) of head-unrestrained monkeys. Experimental Brain Research, 2006, 168, 455-470.	1.5	26

#	Article	IF	CITATIONS
109	Temporal characteristics of neurons in the central mesencephalic reticular formation of head unrestrained monkeys. Experimental Brain Research, 2006, 168, 471-492.	1.5	23
110	Dynamics of the horizontal vestibuloocular reflex after unilateral labyrinthectomy: response to high frequency, high acceleration, and high velocity rotations. Experimental Brain Research, 2006, 175, 471-484.	1.5	62
111	Premotor Correlates of Integrated Feedback Control for Eye-Head Gaze Shifts. Journal of Neuroscience, 2006, 26, 4922-4929.	3.6	44
112	Time Course of Vestibuloocular Reflex Suppression During Gaze Shifts. Journal of Neurophysiology, 2004, 92, 3408-3422.	1.8	58
113	Dissociating Self-Generated from Passively Applied Head Motion: Neural Mechanisms in the Vestibular Nuclei. Journal of Neuroscience, 2004, 24, 2102-2111.	3.6	206
114	Sensory signals during active versus passive movement. Current Opinion in Neurobiology, 2004, 14, 698-706.	4.2	226
115	Signal Processing in the Vestibular System During Active Versus Passive Head Movements. Journal of Neurophysiology, 2004, 91, 1919-1933.	1.8	163
116	Brain Stem Pursuit Pathways: Dissociating Visual, Vestibular, and Proprioceptive Inputs During Combined Eye-Head Gaze Tracking. Journal of Neurophysiology, 2003, 90, 271-290.	1.8	56
117	Discharge Dynamics of Oculomotor Neural Integrator Neurons During Conjugate and Disjunctive Saccades and Fixation. Journal of Neurophysiology, 2003, 90, 739-754.	1.8	63
118	Semicircular Canal Afferents Similarly Encode Active and Passive Head-On-Body Rotations: Implications for the Role of Vestibular Efference. Journal of Neuroscience, 2002, 22, RC226-RC226.	3.6	100
119	Vestibuloocular Reflex Dynamics During High-Frequency and High-Acceleration Rotations of the Head on Body in Rhesus Monkey. Journal of Neurophysiology, 2002, 88, 13-28.	1.8	140
120	Vestibuloocular Reflex Signal Modulation During Voluntary and Passive Head Movements. Journal of Neurophysiology, 2002, 87, 2337-2357.	1.8	112
121	Gaze-, Eye-, and Head-Movement Dynamics During Closed- and Open-Loop Gaze Pursuit. Journal of Neurophysiology, 2002, 87, 859-875.	1.8	14
122	Dynamics of Abducens Nucleus Neuron Discharges During Disjunctive Saccades. Journal of Neurophysiology, 2002, 88, 3452-3468.	1.8	45
123	Conjugate and Vergence Oscillations During Saccades and Gaze Shifts: Implications for Integrated Control of Binocular Movement. Journal of Neurophysiology, 2002, 87, 257-272.	1.8	34
124	Selective Processing of Vestibular Reafference during Self-Generated Head Motion. Journal of Neuroscience, 2001, 21, 2131-2142.	3.6	201
125	Do Extraocular Motoneurons Encode Head Velocity during Headâ€Restrained versus Headâ€Unrestrained Saccadic and Smooth Pursuit Movements?. Annals of the New York Academy of Sciences, 2001, 942, 497-500.	3.8	2
126	Signal Processing by Vestibular Nuclei Neurons Is Dependent on the Current Behavioral Goal. Annals of the New York Academy of Sciences, 2001, 942, 345-363.	3.8	18

#	Article	IF	CITATIONS
127	Passive Activation of Neck Proprioceptive Inputs Does Not Influence the Discharge Patterns of Vestibular Nuclei Neurons. Annals of the New York Academy of Sciences, 2001, 942, 486-489.	3.8	16
128	A comparison of head-unrestrained and head-restrained pursuit: influence of eye position and target velocity on latency. Experimental Brain Research, 2000, 133, 139-155.	1.5	8
129	Comparing Extraocular Motoneuron Discharges During Head-Restrained Saccades and Head-Unrestrained Gaze Shifts. Journal of Neurophysiology, 2000, 83, 630-637.	1.8	23
130	Quantitative Analysis of Abducens Neuron Discharge Dynamics During Saccadic and Slow Eye Movements. Journal of Neurophysiology, 1999, 82, 2612-2632.	1.8	171
131	A neural correlate for vestibulo-ocular reflex suppression during voluntary eye–head gaze shifts. Nature Neuroscience, 1998, 1, 404-410.	14.8	138
132	Analysis of Primate IBN Spike Trains Using System Identification Techniques. III. Relationship to Motor Error During Head-Fixed Saccades and Head-Free Gaze Shifts. Journal of Neurophysiology, 1997, 78, 3307-3322.	1.8	11
133	Analysis of Primate IBN Spike Trains Using System Identification Techniques. II. Relationship to Gaze, Eye, and Head Movement Dynamics During Head-Free Gaze Shifts. Journal of Neurophysiology, 1997, 78, 3283-3306.	1.8	54
134	Analysis of Primate IBN Spike Trains Using System Identification Techniques. I. Relationship to Eye Movement Dynamics During Head-Fixed Saccades. Journal of Neurophysiology, 1997, 78, 3259-3282.	1.8	78
135	Inhibitory Burst Neuron Activity Encodes Gaze, Not Eye, Metrics and Dynamics during Passive Head on Body Rotation Annals of the New York Academy of Sciences, 1996, 781, 601-606.	3.8	9
136	The use of system identification techniques in the analysis of oculomotor burst neuron spike train dynamics. Journal of Computational Neuroscience, 1996, 3, 347-368.	1.0	78
137	Responses of Vestibular and Prepositus Neurons to Head Movements during Voluntary Suppression of the Vestibuloocular Reflex. Annals of the New York Academy of Sciences, 1992, 656, 379-395.	3.8	10