
Ana Mayela Ramos-De-La-Peña

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6868288/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein A chromatography: Challenges and progress in the purification of monoclonal antibodies. Journal of Separation Science, 2019, 42, 1816-1827.	2.5	92
2	A review through recovery, purification and identification of genipin. Phytochemistry Reviews, 2016, 15, 37-49.	6.5	34
3	Environmental friendly cold-mechanical/sonic enzymatic assisted extraction of genipin from genipap (Genipa americana). Ultrasonics Sonochemistry, 2014, 21, 43-49.	8.2	25
4	Advances and perspectives of Pachyrhizus spp. in food science and biotechnology. Trends in Food Science and Technology, 2013, 29, 44-54.	15.1	24
5	Progress and Challenges in PEGylated Proteins Downstream Processing: A Review of the Last 8ÂYears. International Journal of Peptide Research and Therapeutics, 2020, 26, 333-348.	1.9	21
6	Methods and substrates for feruloyl esterase activity detection, a review. Journal of Molecular Catalysis B: Enzymatic, 2016, 130, 74-87.	1.8	16
7	Recovery of genipin from genipap fruit by high pressure processing. LWT - Food Science and Technology, 2015, 63, 1347-1350.	5.2	10
8	Optimization of the liquefaction and saccharification of structural polysaccharides of jicama (Pachyrhizus erosus L.) tissue by enzymatic pulping. LWT - Food Science and Technology, 2012, 46, 232-238.	5.2	9
9	Enzymatic liquefaction of jicama (Pachyrhizus erosus) tuberous roots and characterization of the cell walls after processing. LWT - Food Science and Technology, 2012, 49, 257-262.	5.2	9
10	Ultrafiltration for genipin recovery technologies after ultrasonic treatment of genipap fruit. Biocatalysis and Agricultural Biotechnology, 2015, 4, 11-16.	3.1	9
11	Research-based learning as a strategy for the integration of theory and practice and the development of disciplinary competencies in engineering. International Journal on Interactive Design and Manufacturing, 2019, 13, 1331-1340.	2.2	8
12	Rapid physicochemical characterization of innovative fucoidan/fructan powders by ATR–FTIR. Food Science and Biotechnology, 2018, 27, 411-415.	2.6	4
13	High Pressure Processing of Lipase (Thermomyces lanuginosus) : Kinetics and Structure Assessment. European Journal of Lipid Science and Technology, 2020, 122, 1900289.	1.5	4
14	Temperature model for process impact non-uniformity in genipin recovery by high pressure processing. Food Chemistry, 2015, 187, 444-450.	8.2	3
15	Electrokinetic assessment of RNase A species and innovative PEG-grafted agarose-based resins used in downstream processing of PEGylated proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 562-569.	4.7	2
16	Pegylated species separation through an innovative PEG-grafted agarose-based resin, association quantified by microcalorimetry. Separation and Purification Technology, 2020, 253, 117507.	7.9	1
17	Progress in nanostructure understanding of edible crystalline fats and their application in nano-delivery systems: Cocoa butter as a model. Food Research International, 2021, 147, 110561.	6.2	1
18	Virtual Reality Immersion: Taste and Texture Changes for Identical Samples of Two Common Condiments. Chemosensory Perception, 2022, 15, 87-94.	1.2	1

#	Article	IF	CITATIONS
19	Research Progress on Application of Celluclast \hat{A}^{\otimes} as a Processing Aid for Pectin Extraction from Kiwifruit Pomace: A Mini Review. , 2021, , 83-91.		Ο
20	Sodium carbonate versus borate buffer for lactase quenching, laboratory work. Biochemistry and Molecular Biology Education, 2021, 49, 935-941.	1.2	0
21	Going Through Pulsed Electric Field Technology for Food Processing: Assessment of Progress and Achievements. , 2020, , 293-329.		0