Carmen Evora

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6868109/publications.pdf

Version: 2024-02-01

75 papers

2,925 citations

30 h-index 52 g-index

76 all docs 76 docs citations

76 times ranked 4191 citing authors

#	Article	IF	CITATIONS
1	Bioinspired gelatin/bioceramic composites loaded with bone morphogenetic protein-2 (BMP-2) promote osteoporotic bone repair. Materials Science and Engineering C, 2022, 134, 112539.	7.3	13
2	Osteoprotective effect of the marine alkaloid norzoanthamine on an osteoporosis model in ovariectomized rat. Biomedicine and Pharmacotherapy, 2022, 147, 112631.	5.6	3
3	Stem Cell Growth and Differentiation in Organ Culture: New Insights for Uterine Fibroid Treatment. Biomedicines, 2022, 10, 1542.	3.2	2
4	Injectable Scaffold for Bone Marrow Stem Cells and Bone Morphogenetic Protein-2 to Repair Cartilage. Cartilage, 2021, 12, 293-306.	2.7	16
5	Tailor-made oligonucleotide-loaded lipid-polymer nanosystems designed for bone gene therapy. Drug Delivery and Translational Research, 2021, 11, 598-607.	5.8	9
6	The Bone Regeneration Capacity of BMP-2 + MMP-10 Loaded Scaffolds Depends on the Tissue Status. Pharmaceutics, 2021, 13, 979.	4.5	3
7	Effective Osteogenic Priming of Mesenchymal Stem Cells through LNA-ASOs-Mediated Sfrp1 Gene Silencing. Pharmaceutics, 2021, 13, 1277.	4.5	4
8	Alginate-hydrogel versus alginate-solid system. Efficacy in bone regeneration in osteoporosis. Materials Science and Engineering C, 2020, 115, 111009.	7.3	21
9	Organotypic culture as a research and preclinical model to study uterine leiomyomas. Scientific Reports, 2020, 10, 5212.	3.3	17
10	First attempts of the use of intake tracers in encapsulated diets with chitosan for octopus paralarvae. Aquaculture Research, 2019, 50, 3070-3073.	1.8	2
11	<i>Smurf1</i> Silencing Using a LNA-ASOs/Lipid Nanoparticle System to Promote Bone Regeneration. Stem Cells Translational Medicine, 2019, 8, 1306-1317.	3. 3	14
12	New injectable two-step forming hydrogel for delivery of bioactive substances in tissue regeneration. International Journal of Energy Production and Management, 2019, 6, 149-162.	3.7	14
13	scCO2-foamed silk fibroin aerogel/poly(ε-caprolactone) scaffolds containing dexamethasone for bone regeneration. Journal of CO2 Utilization, 2019, 31, 51-64.	6.8	49
14	PLGA-BMP-2 and PLA- $17\hat{l}^2$ -Estradiol Microspheres Reinforcing a Composite Hydrogel for Bone Regeneration in Osteoporosis. Pharmaceutics, 2019, 11, 648.	4.5	25
15	Combined sustained release of BMP2 and MMP10 accelerates bone formation and mineralization of calvaria critical size defect in mice. Drug Delivery, 2018, 25, 750-756.	5.7	25
16	Mobility of Water and Polymer Species and Rheological Properties of Supramolecular Polypseudorotaxane Gels Suitable for Bone Regeneration. Bioconjugate Chemistry, 2018, 29, 503-516.	3.6	14
17	Bone regeneration in osteoporosis by delivery BMP-2 and PRGF from tetronic–alginate composite thermogel. International Journal of Pharmaceutics, 2018, 543, 160-168.	5. 2	48
18	In situ gel-forming system for dual BMP-2 and $17\hat{l}^2$ -estradiol controlled release for bone regeneration in osteoporotic rats. Drug Delivery and Translational Research, 2018, 8, 1103-1113.	5.8	16

#	Article	IF	CITATIONS
19	Development of a standard method for inÂvitro evaluation of Triamcinolone and BMP-2 diffusion mechanism from thermosensitive and biocompatible composite hyaluronic acid-pluronic hydrogels. Journal of Drug Delivery Science and Technology, 2017, 42, 284-291.	3.0	7
20	BMP delivery systems for bone regeneration: Healthy vs osteoporotic population. Review. Journal of Drug Delivery Science and Technology, 2017, 42, 107-118.	3.0	13
21	Biodegradable PCL/fibroin/hydroxyapatite porous scaffolds prepared by supercritical foaming for bone regeneration. International Journal of Pharmaceutics, 2017, 527, 115-125.	5.2	42
22	Structure-Performance Relationships of Temperature-Responsive PLGA-PEG-PLGA Gels for Sustained Release of Bone Morphogenetic Protein-2. Journal of Pharmaceutical Sciences, 2017, 106, 3353-3362.	3.3	20
23	Evaluation of the effectiveness of a bMSC and BMP-2 polymeric trilayer system in cartilage repair. Biomedical Materials (Bristol), 2017, 12, 045001.	3.3	16
24	Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. International Journal of Pharmaceutics, 2017, 523, 556-566.	5.2	145
25	Biodistribution of radiolabeled polyglutamic acid and PEG-polyglutamic acid nanocapsules. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 112, 155-163.	4.3	17
26	Evaluation of nanostructure and microstructure of bone regenerated by BMPâ€2â€porous scaffolds. Journal of Biomedical Materials Research - Part A, 2015, 103, 2998-3011.	4.0	10
27	BMP-2, PDGF-BB, and bone marrow mesenchymal cells in a macroporous $\langle i \rangle \hat{l}^2 \langle i \rangle$ -TCP scaffold for critical-size bone defect repair in rats. Biomedical Materials (Bristol), 2015, 10, 045008.	3.3	49
28	Bone critical defect repair with poloxamine–cyclodextrin supramolecular gels. International Journal of Pharmaceutics, 2015, 495, 463-473.	5.2	25
29	Cartilage repair by local delivery of transforming growth factorâ€Î²1 or bone morphogenetic proteinâ€2 from a novel, segmented polyurethane/polylacticâ€ <i>co</i> â€glycolic bilayered scaffold. Journal of Biomedical Materials Research - Part A, 2014, 102, 1110-1120.	4.0	47
30	Smurf1 Knocked-Down, Mesenchymal Stem Cells and BMP-2 in an Electrospun System for Bone Regeneration. Biomacromolecules, 2014, 15, 1311-1322.	5.4	18
31	Fate of nanostructured lipid carriers (NLCs) following the oral route: design, pharmacokinetics and biodistribution. Journal of Microencapsulation, 2014, 31, 1-8.	2.8	47
32	Bone Regeneration Induced by an <l>ln</l> <l>Situ</l> Gel-Forming Poloxamine, Bone Morphogenetic Protein-2 System. Journal of Biomedical Nanotechnology, 2014, 10, 959-969.	1.1	19
33	Cartilage repair by local delivery of transforming growth factor- \hat{l}^21 or bone morphogenetic protein-2 from a novel, segmented polyurethane/polylactic- <i>co</i> -glycolic bilayered scaffold. Journal of Biomedical Materials Research - Part A, 2014, 102, 1110-1120.	4.0	37
34	Development of PLGA-Mannosamine Nanoparticles as Oral Protein Carriers. Biomacromolecules, 2013, 14, 4046-4052.	5.4	38
35	Osteogenic effect of local, long versus short term BMP-2 delivery from a novel SPU–PLGA–βTCP concentric system in a critical size defect in rats. European Journal of Pharmaceutical Sciences, 2013, 49, 873-884.	4.0	45
36	Biodistribution of Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats: Influence of technological factors. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 309-314.	4.3	51

#	Article	IF	Citations
37	Comparative, osteochondral defect repair: Stem cells versus chondrocytes versus Bone Morphogenetic Protein-2, solely or in combination. , 2013, 25, 351-365.		26
38	Repair of an osteochondral defect by sustained delivery of BMP-2 or $TGF\hat{l}^21$ from a bilayered alginate-PLGA scaffold. Journal of Tissue Engineering and Regenerative Medicine, 2012, 8, n/a-n/a.	2.7	61
39	<i>In vivo</i> osteogenic response to different ratios of BMPâ€2 and VEGF released from a biodegradable porous system. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2382-2391.	4.0	51
40	A platelet derived growth factor delivery system for bone regeneration. Journal of Materials Science: Materials in Medicine, 2012, 23, 1903-1912.	3.6	13
41	Material-related effects of BMP-2 delivery systems on bone regeneration. Acta Biomaterialia, 2012, 8, 781-791.	8.3	54
42	Effect of triple growth factor controlled delivery by a brushite–PLGA system on a bone defect. Injury, 2012, 43, 334-342.	1.7	30
43	Local controlled release of VEGF and PDGF from a combined brushite–chitosan system enhances bone regeneration. Journal of Controlled Release, 2010, 143, 45-52.	9.9	138
44	Reticulated vitreous carbon: a useful material for cell adhesion and tissue invasion., 2010, 20, 282-294.		26
45	VEGF-controlled release within a bone defect from alginate/chitosan/PLA-H scaffolds. European Journal of Pharmaceutics and Biopharmaceutics, 2009, 73, 50-58.	4.3	75
46	Efficacy of ciprofloxacin implants in treating experimental osteomyelitis. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 85B, 93-104.	3.4	28
47	Validation of a method for non-invasive in vivo measurement of growth factor release from a local delivery system in bone. Journal of Controlled Release, 2006, 114, 223-229.	9.9	42
48	Biodegradable implantable fluconazole delivery rods designed for the treatment of fungal osteomyelitis: Influence of gamma sterilization. Journal of Biomedical Materials Research - Part A, 2006, 77A, 632-638.	4.0	23
49	PLA-PEG particles as nasal protein carriers: the influence of the particle size. International Journal of Pharmaceutics, 2005, 292, 43-52.	5.2	136
50	Two-month ciprofloxacin implants for multibacterial bone infections. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60, 401-406.	4.3	34
51	Methadone implants for methadone maintenance treatment. In vitro and in vivo animal studies. Journal of Controlled Release, 2004, 95, 413-421.	9.9	25
52	PEG-PLA Nanoparticles as Carriers for Nasal Vaccine Delivery. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2004, 17, 174-185.	1,2	103
53	Ciprofloxacin implants for bone infection. In vitro–in vivo characterization. Journal of Controlled Release, 2003, 93, 341-354.	9.9	86
54	In vitro–in vivo characterization of gentamicin bone implants. Journal of Controlled Release, 2002, 83, 353-364.	9.9	104

#	Article	IF	CITATIONS
55	In vivo–in vitro study of biodegradable and osteointegrable gentamicin bone implants. European Journal of Pharmaceutics and Biopharmaceutics, 2001, 52, 151-158.	4.3	55
56	In vivo–in vitro study of biodegradable methadone delivery systems. Biomaterials, 2001, 22, 563-570.	11.4	35
57	The role of PEG on the stability in digestive fluids and in vivo fate of PEG-PLA nanoparticles following oral administration. Colloids and Surfaces B: Biointerfaces, 2000, 18, 315-323.	5.0	317
58	Formulation of calcium phosphates/poly (d,l-lactide) blends containing gentamicin for bone implantation. Journal of Controlled Release, 2000, 68, 121-134.	9.9	66
59	Radiolabelled biodegradable microspheres for lung imaging. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50, 227-236.	4.3	27
60	One-month sustained release microspheres of 125I-bovine calcitonin. Journal of Controlled Release, 1999, 59, 55-62.	9.9	32
61	Relating the phagocytosis of microparticles by alveolar macrophages to surface chemistry: the effect of 1,2-dipalmitoylphosphatidylcholine. Journal of Controlled Release, 1998, 51, 143-152.	9.9	138
62	Effect of storage on the stability of ?-PLA microspheres containing methadone. International Journal of Pharmaceutics, 1998, 166, 223-225.	5.2	7
63	Effect of surfactant agents on the release of 125I-bovine calcitonin from PLGA microspheres: in vitro — in vivo study Journal of Controlled Release, 1997, 43, 59-64.	9.9	10
64	The Adsorption of Poly(vinyl alcohol) to Biodegradable Microparticles Studied by X-Ray Photoelectron Spectroscopy (XPS). Journal of Colloid and Interface Science, 1997, 185, 538-547.	9.4	126
65	Effect of Surfactant Agents on the in Vitro Release of Insulin from DL-PLA Microspheres. Drug Development and Industrial Pharmacy, 1996, 22, 1009-1012.	2.0	2
66	Optimization of 7-day release (in vitro) from DL-PLA methadone microspheres. International Journal of Pharmaceutics, 1996, 134, 203-211.	5.2	8
67	Degradation of DL-PLA-methadone microspheres during in vitro release. International Journal of Pharmaceutics, 1996, 140, 219-227.	5.2	23
68	Preparation and evaluation of insulin-loaded poly(?-lactide) microspheres using an experimental design. International Journal of Pharmaceutics, 1996, 142, 135-142.	5.2	31
69	Release control of albumin from polylactic acid microspheres. International Journal of Pharmaceutics, 1995, 125, 223-230.	5.2	21
70	Use of Surfactants in Polylactic Acid Protein Microspheres. Drug Development and Industrial Pharmacy, 1995, 21, 549-558.	2.0	20
71	Effect of humidity and packaging on the long-term aging of commercial sustained-release theophylline tablets. International Journal of Pharmaceutics, 1992, 83, 59-63.	5.2	1
72	Optimization of dl-PLA molecular weight via the response surface method. International Journal of Pharmaceutics, 1992, 86, 107-111.	5.2	7

#	Article	IF	CITATIONS
73	A new approach to pharmacokinetic parameters: Estimation of cefuroxime during haemodialysis. Biopharmaceutics and Drug Disposition, 1990, 11, 107-120.	1.9	2
74	Multivariate Analysis of Variance of Dissolution Data in the Development of Oral Sustained Release Formulations. Drug Development and Industrial Pharmacy, 1990, 16, 2145-2152.	2.0	0
75	Theoretical model for interpretation of in situ absorption studies. International Journal of Pharmaceutics, 1988, 45, 123-128.	5.2	1