## Kevin K W Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6866282/publications.pdf Version: 2024-02-01



KEVIN K W/WANC

| #  | Article                                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research.<br>Lancet Neurology, The, 2017, 16, 987-1048.                                                                                                         | 10.2 | 1,571     |
| 2  | Calpain and caspase: can you tell the difference?. Trends in Neurosciences, 2000, 23, 20-26.                                                                                                                                                            | 8.6  | 965       |
| 3  | Glial fibrillary acidic protein: from intermediate filament assembly and gliosis to neurobiomarker.<br>Trends in Neurosciences, 2015, 38, 364-374.                                                                                                      | 8.6  | 573       |
| 4  | The calpain family and human disease. Trends in Molecular Medicine, 2001, 7, 355-362.                                                                                                                                                                   | 6.7  | 424       |
| 5  | Non-erythroid α-spectrin breakdown by calpain and interleukin 1 β-converting-enzyme-like protease(s) in<br>apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochemical<br>Journal, 1996, 319, 683-690.             | 3.7  | 418       |
| 6  | Acute Biomarkers of Traumatic Brain Injury: Relationship between Plasma Levels of Ubiquitin<br>C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein. Journal of Neurotrauma, 2014, 31, 19-25.                                                    | 3.4  | 356       |
| 7  | An update on diagnostic and prognostic biomarkers for traumatic brain injury. Expert Review of<br>Molecular Diagnostics, 2018, 18, 165-180.                                                                                                             | 3.1  | 323       |
| 8  | Case-mix, care pathways, and outcomes in patients with traumatic brain injury in CENTER-TBI: a<br>European prospective, multicentre, longitudinal, cohort study. Lancet Neurology, The, 2019, 18,<br>923-934.                                           | 10.2 | 304       |
| 9  | Simultaneous Degradation of αII- and βII-Spectrin by Caspase 3 (CPP32) in Apoptotic Cells. Journal of Biological Chemistry, 1998, 273, 22490-22497.                                                                                                     | 3.4  | 287       |
| 10 | Cytochrome c Release and Caspase Activation in Traumatic Axonal Injury. Journal of Neuroscience,<br>2000, 20, 2825-2834.                                                                                                                                | 3.6  | 282       |
| 11 | Elevated Levels of Serum Glial Fibrillary Acidic Protein Breakdown Products in Mild and Moderate<br>Traumatic Brain Injury Are Associated With Intracranial Lesions and Neurosurgical Intervention.<br>Annals of Emergency Medicine, 2012, 59, 471-483. | 0.6  | 282       |
| 12 | Calpain inhibition: an overview of its therapeutic potential. Trends in Pharmacological Sciences, 1994, 15, 412-419.                                                                                                                                    | 8.7  | 270       |
| 13 | Thalamic and Subthalamic Deep Brain Stimulation for Essential Tremor. Neurosurgery, 2012, 70, 840-846.                                                                                                                                                  | 1.1  | 264       |
| 14 | Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury*.<br>Critical Care Medicine, 2010, 38, 138-144.                                                                                                         | 0.9  | 259       |
| 15 | Recovery After Mild Traumatic Brain Injury in Patients Presenting to US Level I Trauma Centers. JAMA<br>Neurology, 2019, 76, 1049.                                                                                                                      | 9.0  | 247       |
| 16 | Caspase-Mediated Fragmentation of Calpain Inhibitor Protein Calpastatin during Apoptosis. Archives of Biochemistry and Biophysics, 1998, 356, 187-196.                                                                                                  | 3.0  | 242       |
| 17 | Biokinetic Analysis of Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) in Severe Traumatic Brain Injury<br>Patient Biofluids. Journal of Neurotrauma, 2011, 28, 861-870.                                                                                     | 3.4  | 205       |
| 18 | Regional calpain and caspase-3 proteolysis of α-spectrin after traumatic brain injury. NeuroReport, 1998,<br>9, 2437-2442.                                                                                                                              | 1.2  | 200       |

| #  | Article                                                                                                                                                                                                                                                                             | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Serum levels of ubiquitin C-terminal hydrolase distinguish mild traumatic brain injury from trauma controls and are elevated in mild and moderate traumatic brain injury patients with intracranial lesions and neurosurgical intervention. Journal of Trauma, 2012, 72, 1335-1344. | 2.3  | 196       |
| 20 | Clinical Significance of <i>α</i> II-Spectrin Breakdown Products in Cerebrospinal Fluid after Severe<br>Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 354-366.                                                                                                          | 3.4  | 194       |
| 21 | αII-Spectrin Breakdown Products (SBDPs): Diagnosis and Outcome in Severe Traumatic Brain Injury<br>Patients. Journal of Neurotrauma, 2010, 27, 1203-1213.                                                                                                                           | 3.4  | 193       |
| 22 | Comparing Plasma Phospho Tau, Total Tau, and Phospho Tau–Total Tau Ratio as Acute and Chronic<br>Traumatic Brain Injury Biomarkers. JAMA Neurology, 2017, 74, 1063.                                                                                                                 | 9.0  | 184       |
| 23 | Neuronal and glial markers are differently associated with computed tomography findings and<br>outcome in patients with severe traumatic brain injury: a case control study. Critical Care, 2011, 15,<br>R156.                                                                      | 5.8  | 181       |
| 24 | Crystal structure of calcium bound domain VI of calpain at 1.9 Ã resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nature Structural Biology, 1997, 4, 539-547.                                                                                        | 9.7  | 180       |
| 25 | Calpain in the CNS: From Synaptic Function to Neurotoxicity. Science Signaling, 2008, 1, re1.                                                                                                                                                                                       | 3.6  | 175       |
| 26 | Risk of Posttraumatic Stress Disorder and Major Depression in Civilian Patients After Mild Traumatic<br>Brain Injury. JAMA Psychiatry, 2019, 76, 249.                                                                                                                               | 11.0 | 170       |
| 27 | Procaspase-3 and Poly(ADP)ribose Polymerase (PARP) Are Calpain Substrates. Biochemical and Biophysical Research Communications, 1999, 263, 94-99.                                                                                                                                   | 2.1  | 169       |
| 28 | Accumulation of nonâ€erythroid αllâ€spectrin and calpainâ€cleaved αllâ€spectrin breakdown products in<br>cerebrospinal fluid after traumatic brain injury in rats. Journal of Neurochemistry, 2001, 78, 1297-1306.                                                                  | 3.9  | 169       |
| 29 | Novel Differential Neuroproteomics Analysis of Traumatic Brain Injury in Rats. Molecular and Cellular Proteomics, 2006, 5, 1887-1898.                                                                                                                                               | 3.8  | 164       |
| 30 | GFAP Out-Performs S100β in Detecting Traumatic Intracranial Lesions on Computed Tomography in<br>Trauma Patients with Mild Traumatic Brain Injury and Those with Extracranial Lesions. Journal of<br>Neurotrauma, 2014, 31, 1815-1822.                                              | 3.4  | 163       |
| 31 | Processing of cdk5 Activator p35 to Its Truncated Form (p25) by Calpain in Acutely Injured Neuronal<br>Cells. Biochemical and Biophysical Research Communications, 2000, 274, 16-21.                                                                                                | 2.1  | 158       |
| 32 | Blood-based diagnostics of traumatic brain injuries. Expert Review of Molecular Diagnostics, 2011, 11,<br>65-78.                                                                                                                                                                    | 3.1  | 155       |
| 33 | Morphologic and Biochemical Characterization of Brain Injury in a Model of Controlled Blast<br>Overpressure Exposure. Journal of Trauma, 2010, 69, 795-804.                                                                                                                         | 2.3  | 152       |
| 34 | Association between plasma GFAP concentrations and MRI abnormalities in patients with CT-negative traumatic brain injury in the TRACK-TBI cohort: a prospective multicentre study. Lancet Neurology, The, 2019, 18, 953-961.                                                        | 10.2 | 150       |
| 35 | Human Traumatic Brain Injury Induces Autoantibody Response against Glial Fibrillary Acidic Protein<br>and Its Breakdown Products. PLoS ONE, 2014, 9, e92698.                                                                                                                        | 2.5  | 149       |
| 36 | Blood biomarkers on admission in acute traumatic brain injury: Relations to severity, CT findings and care path in the CENTER-TBI study. EBioMedicine, 2020, 56, 102785.                                                                                                            | 6.1  | 147       |

| #  | Article                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | 2-Amino-4H-3,1-benzoxazin-4-ones as Inhibitors of C1r Serine Protease. Journal of Medicinal Chemistry, 1998, 41, 1060-1067.                                                                                                        | 6.4  | 145       |
| 38 | Serum Brain Biomarker Level, Neurocognitive Performance, and Self-Reported Symptom Changes in<br>Soldiers Repeatedly Exposed to Low-Level Blast: A Breacher Pilot Study. Journal of Neurotrauma, 2013,<br>30, 1620-1630.           | 3.4  | 140       |
| 39 | The seven-transmembrane receptor Smoothened cell-autonomously induces multiple ventral cell types. Nature Neuroscience, 2000, 3, 41-46.                                                                                            | 14.8 | 138       |
| 40 | Ubiquitin Câ€ŧerminal hydrolase‣1 as a biomarker for ischemic and traumatic brain injury in rats.<br>European Journal of Neuroscience, 2010, 31, 722-732.                                                                          | 2.6  | 134       |
| 41 | Brain Injury Biomarkers May Improve the Predictive Power of the IMPACT Outcome Calculator. Journal of Neurotrauma, 2012, 29, 1770-1778.                                                                                            | 3.4  | 132       |
| 42 | lschemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise<br>training and calpain inhibition. American Journal of Physiology - Heart and Circulatory Physiology,<br>2006, 290, H128-H136. | 3.2  | 130       |
| 43 | Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and αll-Spectrin Breakdown Product 145 kDa<br>Correlate with Outcome after Pediatric TBI. Journal of Neurotrauma, 2012, 29, 162-167.                                     | 3.4  | 130       |
| 44 | αII-Spectrin Breakdown Product Cerebrospinal Fluid Exposure Metrics Suggest Differences in Cellular<br>Injury Mechanisms after Severe Traumatic Brain Injury. Journal of Neurotrauma, 2009, 26, 471-479.                           | 3.4  | 122       |
| 45 | Clial Neuronal Ratio: A Novel Index for Differentiating Injury Type in Patients with Severe Traumatic<br>Brain Injury. Journal of Neurotrauma, 2012, 29, 1096-1104.                                                                | 3.4  | 121       |
| 46 | A Panel of Serum MiRNA Biomarkers for the Diagnosis of Severe to Mild Traumatic Brain Injury in<br>Humans. Scientific Reports, 2016, 6, 28148.                                                                                     | 3.3  | 121       |
| 47 | Protein Biomarkers and Neuroproteomics Characterization of Microvesicles/Exosomes from Human<br>Cerebrospinal Fluid Following Traumatic Brain Injury. Molecular Neurobiology, 2018, 55, 6112-6128.                                 | 4.0  | 121       |
| 48 | Assessment of Follow-up Care After Emergency Department Presentation for Mild Traumatic Brain<br>Injury and Concussion. JAMA Network Open, 2018, 1, e180210.                                                                       | 5.9  | 119       |
| 49 | Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury.<br>Journal of Neurochemistry, 2006, 98, 700-712.                                                                               | 3.9  | 117       |
| 50 | Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury. Journal of Clinical Epidemiology, 2020, 122, 95-107.                                                         | 5.0  | 117       |
| 51 | Effects of ICE-like protease and calpain inhibitors on neuronal apoptosis. NeuroReport, 1996, 8, 249-255.                                                                                                                          | 1.2  | 114       |
| 52 | Calpain and caspase processing of caspase-12 contribute to the ER stress-induced cell death pathway in differentiated PC12 cells. Apoptosis: an International Journal on Programmed Cell Death, 2010, 15, 1480-1493.               | 4.9  | 113       |
| 53 | Multiple alphall-spectrin breakdown products distinguish calpain and caspase dominated necrotic and apoptotic cell death pathways. Apoptosis: an International Journal on Programmed Cell Death, 2009, 14, 1289-1298.              | 4.9  | 111       |
| 54 | The Novel Calpain Inhibitor SJA6017 Improves Functional Outcome after Delayed Administration in a Mouse Model of Diffuse Brain Injury. Journal of Neurotrauma, 2001, 18, 1229-1240.                                                | 3.4  | 105       |

| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Methamphetamine- and Trauma-Induced Brain Injuries: Comparative Cellular and Molecular<br>Neurobiological Substrates. Biological Psychiatry, 2009, 66, 118-127.                                                                                      | 1.3 | 105       |
| 56 | Calpain-Mediated Collapsin Response Mediator Protein-1, -2, And -4 Proteolysis after Neurotoxic And<br>Traumatic Brain Injury. Journal of Neurotrauma, 2007, 24, 460-472.                                                                            | 3.4 | 104       |
| 57 | Blood-Based Protein Biomarkers for the Management of Traumatic Brain Injuries in Adults Presenting<br>to Emergency Departments with Mild Brain Injury: A Living Systematic Review and Meta-Analysis.<br>Journal of Neurotrauma, 2021, 38, 1086-1106. | 3.4 | 104       |
| 58 | The Calpain Small Subunit Gene Is Essential: Its Inactivation Results in Embryonic Lethality. IUBMB Life, 2000, 50, 63-68.                                                                                                                           | 3.4 | 102       |
| 59 | A Novel, Ultrasensitive Assay for Tau: Potential for Assessing Traumatic Brain Injury in Tissues and<br>Biofluids. Journal of Neurotrauma, 2015, 32, 342-352.                                                                                        | 3.4 | 101       |
| 60 | Developing selective inhibitors of calpain. Trends in Pharmacological Sciences, 1990, 11, 139-142.                                                                                                                                                   | 8.7 | 100       |
| 61 | Biomarkers of Proteolytic Damage Following Traumatic Brain Injury. Brain Pathology, 2004, 14, 202-209.                                                                                                                                               | 4.1 | 99        |
| 62 | Neuroprotection targets after traumatic brain injury. Current Opinion in Neurology, 2006, 19, 514-519.                                                                                                                                               | 3.6 | 97        |
| 63 | Biomarkers of Blast-Induced Neurotrauma: Profiling Molecular and Cellular Mechanisms of Blast<br>Brain Injury. Journal of Neurotrauma, 2009, 26, 913-921.                                                                                            | 3.4 | 97        |
| 64 | Calpain mediates pulmonary vascular remodeling in rodent models of pulmonary hypertension, and its<br>inhibition attenuates pathologic features of disease. Journal of Clinical Investigation, 2011, 121,<br>4548-4566.                              | 8.2 | 94        |
| 65 | Calcium/Calmodulin-dependent Protein Kinase IV Is Cleaved by Caspase-3 and Calpain in SH-SY5Y Human<br>Neuroblastoma Cells Undergoing Apoptosis. Journal of Biological Chemistry, 1998, 273, 19993-20000.                                            | 3.4 | 93        |
| 66 | Characterization of CPP32â€Like Protease Activity Following Apoptotic Challenge in SHâ€5Y5Y<br>Neuroblastoma Cells. Journal of Neurochemistry, 1997, 68, 2328-2337.                                                                                  | 3.9 | 92        |
| 67 | Evidence for Activation of Caspase-3-Like Protease in Excitotoxin- and Hypoxia/Hypoglycemia-Injured<br>Neurons. Journal of Neurochemistry, 2002, 71, 186-195.                                                                                        | 3.9 | 92        |
| 68 | Biochemical, Structural, and Biomarker Evidence for Calpain-Mediated Cytoskeletal Change After<br>Diffuse Brain Injury Uncomplicated by Contusion. Journal of Neuropathology and Experimental<br>Neurology, 2009, 68, 241-249.                       | 1.7 | 91        |
| 69 | Acute Diagnostic Biomarkers for Spinal Cord Injury: Review of the Literature and Preliminary Research<br>Report. World Neurosurgery, 2015, 83, 867-878.                                                                                              | 1.3 | 91        |
| 70 | TNF-? stimulates caspase-3 activation and apoptotic cell death in primary septo-hippocampal cultures.<br>Journal of Neuroscience Research, 2001, 64, 121-131.                                                                                        | 2.9 | 89        |
| 71 | Proteomic identification of biomarkers of traumatic brain injury. Expert Review of Proteomics, 2005, 2, 603-614.                                                                                                                                     | 3.0 | 89        |
| 72 | Increased expression and processing of caspaseâ€12 after traumatic brain injury in rats. Journal of Neurochemistry, 2004, 88, 78-90.                                                                                                                 | 3.9 | 88        |

| #  | Article                                                                                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Structural Model for the Inhibition of Calpain by Calpastatin: Crystal Structures of the Native<br>Domain VI of Calpain and its Complexes with Calpastatin Peptide and a Small Molecule Inhibitor.<br>Journal of Molecular Biology, 2003, 328, 131-146.                                              | 4.2 | 88        |
| 74 | Development and Therapeutic Potential of Calpain Inhibitors. Advances in Pharmacology, 1996, 37, 117-152.                                                                                                                                                                                              | 2.0 | 85        |
| 75 | Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast<br>overpressure compared to "composite―blast. Frontiers in Neurology, 2012, 3, 15.                                                                                                                        | 2.4 | 85        |
| 76 | Comparing calpain- and caspase-3-mediated degradation patterns in traumatic brain injury by differential proteome analysis. Biochemical Journal, 2006, 394, 715-725.                                                                                                                                   | 3.7 | 84        |
| 77 | Activation of the Ca2+-ATPase of human erythrocyte membrane by an endogenous Ca2+-dependent neutral protease. Archives of Biochemistry and Biophysics, 1988, 260, 696-704.                                                                                                                             | 3.0 | 83        |
| 78 | The plasma membrane calcium pump: a multiregulated transporter. Trends in Cell Biology, 1992, 2, 46-52.                                                                                                                                                                                                | 7.9 | 83        |
| 79 | Alterations of Extracellular Calcium Elicit Selective Modes of Cell Death and Protease Activation in<br>SH Y5Y Human Neuroblastoma Cells. Journal of Neurochemistry, 1999, 72, 1853-1863.                                                                                                              | 3.9 | 78        |
| 80 | Approach to Modeling, Therapy Evaluation, Drug Selection, and Biomarker Assessments for a<br>Multicenter Pre-Clinical Drug Screening Consortium for Acute Therapies in Severe Traumatic Brain<br>Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 513-522.                    | 3.4 | 78        |
| 81 | Association of Sex and Age With Mild Traumatic Brain Injury–Related Symptoms: A TRACK-TBI Study.<br>JAMA Network Open, 2021, 4, e213046.                                                                                                                                                               | 5.9 | 74        |
| 82 | Neuronal Nitric Oxide Synthase and Calmodulinâ€Dependent Protein Kinase IIα Undergo<br>Neurotoxinâ€Induced Proteolysis. Journal of Neurochemistry, 1997, 69, 1006-1013.                                                                                                                                | 3.9 | 73        |
| 83 | Point-of-Care Platform Blood Biomarker Testing of Glial Fibrillary Acidic Protein versus S100<br>Calcium-Binding Protein B for Prediction of Traumatic Brain Injuries: A Transforming Research and<br>Clinical Knowledge in Traumatic Brain Injury Study. Journal of Neurotrauma, 2020, 37, 2460-2467. | 3.4 | 72        |
| 84 | Insight into Pre-Clinical Models of Traumatic Brain Injury Using Circulating Brain Damage Biomarkers:<br>Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 595-605.                                                                                                                    | 3.4 | 71        |
| 85 | Serum Biomarkers of MRI Brain Injury in Neonatal Hypoxic Ischemic Encephalopathy Treated With<br>Whole-Body Hypothermia. Pediatric Critical Care Medicine, 2013, 14, 310-317.                                                                                                                          | 0.5 | 70        |
| 86 | Temporal relationships between de novo protein synthesis, calpain and caspase 3-like protease<br>activation, and DNA fragmentation during apoptosis in septo-hippocampal cultures. , 1998, 52, 505-520.                                                                                                |     | 67        |
| 87 | Plasma Anti-Glial Fibrillary Acidic Protein Autoantibody Levels during the Acute and Chronic Phases<br>of Traumatic Brain Injury: A Transforming Research and Clinical Knowledge in Traumatic Brain Injury<br>Pilot Study. Journal of Neurotrauma, 2016, 33, 1270-1277.                                | 3.4 | 66        |
| 88 | Circulating Damage Marker Profiles Support a Neuroprotective Effect of Erythropoietin in Ischemic<br>Stroke Patients. Molecular Medicine, 2011, 17, 1306-1310.                                                                                                                                         | 4.4 | 65        |
| 89 | Neurochemical biomarkers in spinal cord injury. Spinal Cord, 2019, 57, 819-831.                                                                                                                                                                                                                        | 1.9 | 65        |
| 90 | Maitotoxin Induces Calpain Activation in SH-SY5Y Neuroblastoma Cells and Cerebrocortical Cultures. Archives of Biochemistry and Biophysics, 1996, 331, 208-214.                                                                                                                                        | 3.0 | 64        |

| #   | Article                                                                                                                                                                                                             | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Concurrent Assessment of Calpain and Caspase-3 Activation after Oxygen–Glucose Deprivation in<br>Primary Septo-Hippocampal Cultures. Journal of Cerebral Blood Flow and Metabolism, 2001, 21,<br>1281-1294.         | 4.3  | 64        |
| 92  | Neuroproteomics in neurotrauma. Mass Spectrometry Reviews, 2006, 25, 380-408.                                                                                                                                       | 5.4  | 64        |
| 93  | Enhanced in Vivo Blood–Brain Barrier Penetration by Circular Tau–Transferrin Receptor Bifunctional<br>Aptamer for Tauopathy Therapy. Journal of the American Chemical Society, 2020, 142, 3862-3872.                | 13.7 | 64        |
| 94  | Rapid Discovery of Putative Protein Biomarkers of Traumatic Brain Injury by SDS–PAGE–Capillary<br>Liquid Chromatography–Tandem Mass Spectrometry. Journal of Neurotrauma, 2005, 22, 629-644.                        | 3.4  | 63        |
| 95  | Dual Vulnerability of TDP-43 to Calpain and Caspase-3 Proteolysis after Neurotoxic Conditions and Traumatic Brain Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 1444-1452.                       | 4.3  | 63        |
| 96  | Nicotinamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of<br>Neurotrauma, 2016, 33, 523-537.                                                                                     | 3.4  | 63        |
| 97  | Performance Evaluation of a Multiplex Assay for Simultaneous Detection of Four Clinically Relevant<br>Traumatic Brain Injury Biomarkers. Journal of Neurotrauma, 2019, 36, 182-187.                                 | 3.4  | 63        |
| 98  | Neuroproteomics and systems biologyâ€based discovery of protein biomarkers for traumatic brain<br>injury and clinical validation. Proteomics - Clinical Applications, 2008, 2, 1467-1483.                           | 1.6  | 61        |
| 99  | Synthesis of Findings, Current Investigations, and Future Directions: Operation Brain Trauma Therapy.<br>Journal of Neurotrauma, 2016, 33, 606-614.                                                                 | 3.4  | 61        |
| 100 | Concurrent calpain and caspase-3 mediated proteolysis of αII-spectrin and tau in rat brain after<br>methamphetamine exposure: A similar profile to traumatic brain injury. Life Sciences, 2005, 78, 301-309.        | 4.3  | 60        |
| 101 | Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. Journal of Neurochemistry, 2008, 104, 1404-1414.                                                    | 3.9  | 60        |
| 102 | Levetiracetam Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2016, 33, 581-594.                                                                                       | 3.4  | 60        |
| 103 | Temporal and spatial profile of caspase 8 expression and proteolysis after experimental traumatic brain injury. Journal of Neurochemistry, 2001, 78, 862-873.                                                       | 3.9  | 59        |
| 104 | Assessing neuro-systemic & behavioral components in the pathophysiology of blast-related brain<br>injury. Frontiers in Neurology, 2013, 4, 186.                                                                     | 2.4  | 59        |
| 105 | Unfolded Protein Response after Neurotrauma. Journal of Neurotrauma, 2006, 23, 807-829.                                                                                                                             | 3.4  | 57        |
| 106 | NMDA Receptor Antagonist Felbamate Reduces Behavioral Deficits and Blood–Brain Barrier<br>Permeability Changes after Experimental Subarachnoid Hemorrhage in the Rat. Journal of<br>Neurotrauma, 2007, 24, 732-744. | 3.4  | 57        |
| 107 | Use of biomarkers for diagnosis and management of traumatic brain injury patients. Expert Opinion on Medical Diagnostics, 2008, 2, 937-945.                                                                         | 1.6  | 56        |
| 108 | Degradation of βII-Spectrin Protein by Calpain-2 and Caspase-3 Under Neurotoxic and Traumatic Brain<br>Injury Conditions. Molecular Neurobiology, 2015, 52, 696-709.                                                | 4.0  | 56        |

| #   | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Endogenous Bax Translocation in SH-SY5Y Human Neuroblastoma Cells and Cerebellar Granule<br>Neurons Undergoing Apoptosis. Journal of Neurochemistry, 2008, 72, 1899-1906.                                                                            | 3.9  | 55        |
| 110 | The Temporal Relationship of Mental Health Problems and Functional Limitations following mTBI: A<br>TRACK-TBI and TED Study. Journal of Neurotrauma, 2019, 36, 1786-1793.                                                                            | 3.4  | 55        |
| 111 | Calpain and caspase: can you tell the difference?, by Kevin K.W. Wang. Trends in Neurosciences, 2000, 23, 59.                                                                                                                                        | 8.6  | 54        |
| 112 | Structureâ^'Activity Relationship Study and Drug Profile<br>ofN-(4-Fluorophenylsulfonyl)-l-valyl-l-leucinal (SJA6017) as a Potent Calpain Inhibitor. Journal of<br>Medicinal Chemistry, 2003, 46, 868-871.                                           | 6.4  | 54        |
| 113 | Temporal MRI characterization, neurobiochemical and neurobehavioral changes in a mouse repetitive concussive head injury model. Scientific Reports, 2015, 5, 11178.                                                                                  | 3.3  | 54        |
| 114 | Tau phosphorylation induced by severe closed head traumatic brain injury is linked to the cellular prion protein. Acta Neuropathologica Communications, 2017, 5, 30.                                                                                 | 5.2  | 54        |
| 115 | Identification of clinically relevant biomarkers of epileptogenesis — a strategic roadmap. Nature<br>Reviews Neurology, 2021, 17, 231-242.                                                                                                           | 10.1 | 54        |
| 116 | Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Injury, 2012, 26, 1629-1635.                                                                                        | 1.2  | 53        |
| 117 | Ubiquitin C-terminal hydrolase-L1 (UCH-L1) as a therapeutic and diagnostic target in neurodegeneration, neurotrauma and neuro-injuries. Expert Opinion on Therapeutic Targets, 2017, 21, 627-638.                                                    | 3.4  | 53        |
| 118 | Pathological Computed Tomography Features Associated With Adverse Outcomes After Mild<br>Traumatic Brain Injury. JAMA Neurology, 2021, 78, 1137.                                                                                                     | 9.0  | 53        |
| 119 | Acute NMDA toxicity in cultured rat cerebellar granule neurons is accompanied by autophagy induction and late onset autophagic cell death phenotype. BMC Neuroscience, 2010, 11, 21.                                                                 | 1.9  | 52        |
| 120 | Characterization of the fragmented forms of calcineurin produced by calpain I. Biochemistry and Cell<br>Biology, 1989, 67, 703-711.                                                                                                                  | 2.0  | 51        |
| 121 | Biomarkers Track Damage after Graded Injury Severity in a Rat Model of Penetrating Brain Injury.<br>Journal of Neurotrauma, 2013, 30, 1161-1169.                                                                                                     | 3.4  | 51        |
| 122 | Erythropoietin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of<br>Neurotrauma, 2016, 33, 538-552.                                                                                                                    | 3.4  | 51        |
| 123 | Biomarkers Improve Clinical Outcome Predictors of Mortality Following Non-Penetrating Severe<br>Traumatic Brain Injury. Neurocritical Care, 2015, 22, 52-64.                                                                                         | 2.4  | 50        |
| 124 | Caspase-Mediated Calcineurin Activation Contributes to IL-2 Release during T Cell Activation.<br>Biochemical and Biophysical Research Communications, 2001, 285, 1192-1199.                                                                          | 2.1  | 49        |
| 125 | The diagnostic values of UCH-L1 in traumatic brain injury: A meta-analysis. Brain Injury, 2018, 32, 1-17.                                                                                                                                            | 1.2  | 49        |
| 126 | A Multidimensional Differential Proteomic Platform Using Dual-Phase Ion-Exchange<br>Chromatographyâ^'Polyacrylamide Gel Electrophoresis/Reversed-Phase Liquid Chromatography Tandem<br>Mass Spectrometry. Analytical Chemistry, 2005, 77, 4836-4845. | 6.5  | 48        |

| #   | Article                                                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Changes in autophagy proteins in a rat model of controlled cortical impact induced brain injury.<br>Biochemical and Biophysical Research Communications, 2008, 373, 478-481.                                                                                                                               | 2.1  | 48        |
| 128 | The Traumatic Brain Injury Endpoints Development (TED) Initiative: Progress on a Public-Private<br>Regulatory Collaboration To Accelerate Diagnosis and Treatment of Traumatic Brain Injury. Journal of<br>Neurotrauma, 2017, 34, 2721-2730.                                                               | 3.4  | 48        |
| 129 | Selective Release of Calpain Produced αII-Spectrin (α-Fodrin) Breakdown Products by Acute Neuronal<br>Cell Death. Biological Chemistry, 2002, 383, 785-791.                                                                                                                                                | 2.5  | 47        |
| 130 | Direct Rho-associated kinase inhibiton induces cofilin dephosphorylation and neurite outgrowth in PC-12 cells. Cellular and Molecular Biology Letters, 2006, 11, 12-29.                                                                                                                                    | 7.0  | 47        |
| 131 | Identification and Characterization of DNA Aptamers Specific for Phosphorylation Epitopes of Tau<br>Protein. Journal of the American Chemical Society, 2018, 140, 14314-14323.                                                                                                                             | 13.7 | 47        |
| 132 | A Novel Multicenter Preclinical Drug Screening and Biomarker Consortium for Experimental<br>Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Trauma, 2011, 71, S15-S24.                                                                                                                  | 2.3  | 46        |
| 133 | Simultaneous reduction on the sarcolemmal and SR calcium ATPase activities and gene expression in cardiomyopathic hamster. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1992, 1138, 343-349.                                                                                                | 3.8  | 45        |
| 134 | Caspase-Mediated Proteolytic Activation of Calcineurin in Thapsigargin-Mediated Apoptosis in SH-SY5Y Neuroblastoma Cells. Archives of Biochemistry and Biophysics, 2000, 379, 337-343.                                                                                                                     | 3.0  | 45        |
| 135 | Cyclosporine Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of<br>Neurotrauma, 2016, 33, 553-566.                                                                                                                                                                            | 3.4  | 44        |
| 136 | Age-Related Differences in Diagnostic Accuracy of Plasma Glial Fibrillary Acidic Protein and Tau for<br>Identifying Acute Intracranial Trauma on Computed Tomography: A TRACK-TBI Study. Journal of<br>Neurotrauma, 2018, 35, 2341-2350.                                                                   | 3.4  | 44        |
| 137 | Caspase 7: increased expression and activation after traumatic brain injury in rats. Journal of Neurochemistry, 2005, 94, 97-108.                                                                                                                                                                          | 3.9  | 43        |
| 138 | Sequential Degradation of αII and βII Spectrin by Calpain in Glutamate or Maitotoxin-Stimulated Cellsâ€.<br>Biochemistry, 2007, 46, 502-513.                                                                                                                                                               | 2.5  | 43        |
| 139 | Alpha-II spectrin breakdown products in aneurysmal subarachnoid hemorrhage: a novel biomarker of proteolytic injury. Journal of Neurosurgery, 2007, 107, 792-796.                                                                                                                                          | 1.6  | 43        |
| 140 | Calpain and caspase proteolytic markers co-localize with rat cortical neurons after exposure to methamphetamine and MDMA. Acta Neuropathologica, 2007, 114, 277-286.                                                                                                                                       | 7.7  | 43        |
| 141 | COMT ValMet polymorphism is associated with post-traumatic stress disorder and functional outcome following mild traumatic brain injury. Journal of Clinical Neuroscience, 2017, 35, 109-116.                                                                                                              | 1.5  | 43        |
| 142 | Thorough overview of ubiquitin Câ€ŧerminal hydrolase‣1 and glial fibrillary acidic protein as tandem<br>biomarkers recently cleared by US Food and Drug Administration for the evaluation of intracranial<br>injuries among patients with traumatic brain injury. Acute Medicine & Surgery, 2021, 8, e622. | 1.2  | 43        |
| 143 | Further characterization of calpain-mediated proteolysis of the human erythrocyte plasma membrane Ca2+-ATPase. Archives of Biochemistry and Biophysics, 1988, 267, 317-327.                                                                                                                                | 3.0  | 42        |
| 144 | Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochemistry International, 2000, 37, 351-361.                                                                                                 | 3.8  | 42        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Overpressure blast-wave induced brain injury elevates oxidative stress in the hypothalamus and catecholamine biosynthesis in the rat adrenal medulla. Neuroscience Letters, 2013, 544, 62-67.                             | 2.1 | 42        |
| 146 | Multi-Center Pre-clinical Consortia to Enhance Translation of Therapies and Biomarkers for<br>Traumatic Brain Injury: Operation Brain Trauma Therapy and Beyond. Frontiers in Neurology, 2018, 9,<br>640.                 | 2.4 | 42        |
| 147 | Novel neuroproteomic approaches to studying traumatic brain injury. Progress in Brain Research, 2007, 161, 401-418.                                                                                                       | 1.4 | 41        |
| 148 | Operation Brain Trauma Therapy: 2016 Update. Military Medicine, 2018, 183, 303-312.                                                                                                                                       | 0.8 | 41        |
| 149 | Molecular Cloning and Characterization of a Novel Caspase-3 Variant That Attenuates Apoptosis<br>Induced by Proteasome Inhibition. Biochemical and Biophysical Research Communications, 2001, 283,<br>762-769.            | 2.1 | 40        |
| 150 | Calpain- and caspase-mediated αII-spectrin and tau proteolysis in rat cerebrocortical neuronal cultures<br>after ecstasy or methamphetamine exposure. International Journal of Neuropsychopharmacology,<br>2007, 10, 479. | 2.1 | 40        |
| 151 | Alpha II-Spectrin Breakdown Products Serve as Novel Markers of Brain Injury Severity in a Canine<br>Model of Hypothermic Circulatory Arrest. Annals of Thoracic Surgery, 2009, 88, 543-550.                               | 1.3 | 40        |
| 152 | Dual Vulnerability of Tau to Calpains and Caspase-3 Proteolysis Under Neurotoxic and Neurodegenerative Conditions. ASN Neuro, 2010, 3, AN20100012.                                                                        | 2.7 | 40        |
| 153 | Neuroproteomics approach and neurosystems biology analysis: ROCK inhibitors as promising therapeutic targets in neurodegeneration and neurotrauma. Electrophoresis, 2012, 33, 3659-3668.                                  | 2.4 | 40        |
| 154 | Simvastatin Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of<br>Neurotrauma, 2016, 33, 567-580.                                                                                            | 3.4 | 40        |
| 155 | Testing a Multivariate Proteomic Panel for Traumatic Brain Injury Biomarker Discovery: A TRACK-TBI<br>Pilot Study. Journal of Neurotrauma, 2019, 36, 100-110.                                                             | 3.4 | 40        |
| 156 | Subcellular Localization and Duration of μ-Calpain and m-Calpain Activity after Traumatic Brain Injury<br>in the Rat: A Casein Zymography Study. Journal of Cerebral Blood Flow and Metabolism, 1998, 18, 161-167.        | 4.3 | 39        |
| 157 | Differences between Men and Women in Treatment and Outcome after Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 235-251.                                                                                       | 3.4 | 39        |
| 158 | Psychoproteomic Analysis of Rat Cortex Following Acute Methamphetamine Exposure. Journal of Proteome Research, 2008, 7, 1971-1983.                                                                                        | 3.7 | 38        |
| 159 | Neuroproteomics: A Biochemical Means To Discriminate the Extent and Modality of Brain Injury.<br>Journal of Neurotrauma, 2010, 27, 1837-1852.                                                                             | 3.4 | 38        |
| 160 | Differential Neuroproteomic and Systems Biology Analysis of Spinal Cord Injury. Molecular and Cellular Proteomics, 2016, 15, 2379-2395.                                                                                   | 3.8 | 38        |
| 161 | Temporal Profile and Severity Correlation of a Panel of Rat Spinal Cord Injury Protein Biomarkers.<br>Molecular Neurobiology, 2018, 55, 2174-2184.                                                                        | 4.0 | 38        |
| 162 | Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects. Neural Regeneration Research, 2014, 9, 901.                                                                  | 3.0 | 38        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | Increased expression of tissue-type transglutaminase following middle cerebral artery occlusion in rats. Journal of Neurochemistry, 2004, 89, 1301-1307.                                                                                    | 3.9  | 37        |
| 164 | Amino acid starvation induced autophagic cell death in PC-12 cells: Evidence for activation of<br>caspase-3 but not calpain-1. Apoptosis: an International Journal on Programmed Cell Death, 2006, 11,<br>1573-1582.                        | 4.9  | 37        |
| 165 | Therapeutic effects of progesterone and its metabolites in traumatic brain injury may involve non-classical signaling mechanisms. Frontiers in Neuroscience, 2013, 7, 108.                                                                  | 2.8  | 36        |
| 166 | Up-regulation of tissue-type transglutaminase after traumatic brain injury. Journal of<br>Neurochemistry, 2002, 80, 579-588.                                                                                                                | 3.9  | 35        |
| 167 | Overexpression of CRF in the BNST diminishes dysphoria but not anxiety-like behavior in nicotine withdrawing rats. European Neuropsychopharmacology, 2016, 26, 1378-1389.                                                                   | 0.7  | 35        |
| 168 | Prognostic utility of neuroinjury biomarkers in post out-of-hospital cardiac arrest (OHCA) patient<br>management. Medical Hypotheses, 2017, 105, 34-47.                                                                                     | 1.5  | 35        |
| 169 | Temporal and Spatial Profile of Bid Cleavage after Experimental Traumatic Brain Injury. Journal of<br>Cerebral Blood Flow and Metabolism, 2002, 22, 951-958.                                                                                | 4.3  | 34        |
| 170 | <i>Apolipoprotein E epsilon 4 (<scp>APOE</scp>â€</i> ε <i>4)</i> genotype is associated with decreased<br>6â€month verbal memory performance after mild traumatic brain injury. Brain and Behavior, 2017, 7,<br>e00791.                     | 2.2  | 34        |
| 171 | Longitudinal Investigation of Neurotrauma Serum Biomarkers, Behavioral Characterization, and Brain<br>Imaging in Soldiers Following Repeated Low-Level Blast Exposure (New Zealand Breacher Study).<br>Military Medicine, 2018, 183, 28-33. | 0.8  | 34        |
| 172 | Explaining Outcome Differences between Men and Women following Mild Traumatic Brain Injury.<br>Journal of Neurotrauma, 2021, 38, 3315-3331.                                                                                                 | 3.4  | 34        |
| 173 | Effect of frailty on 6-month outcome after traumatic brain injury: a multicentre cohort study with external validation. Lancet Neurology, The, 2022, 21, 153-162.                                                                           | 10.2 | 34        |
| 174 | Psychiatric research: psychoproteomics, degradomics and systems biology. Expert Review of Proteomics, 2008, 5, 293-314.                                                                                                                     | 3.0  | 33        |
| 175 | COMT Val 158 Met polymorphism is associated with nonverbal cognition following mild traumatic brain injury. Neurogenetics, 2016, 17, 31-41.                                                                                                 | 1.4  | 33        |
| 176 | High-Sensitivity C-Reactive Protein is a Prognostic Biomarker of Six-Month Disability after Traumatic<br>Brain Injury: Results from the TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 918-927.                                         | 3.4  | 33        |
| 177 | Caspase-3-Like Activity Is Necessary for IL-2 Release in Activated Jurkat T-cells. Experimental Cell<br>Research, 1998, 244, 302-309.                                                                                                       | 2.6  | 32        |
| 178 | Molecular cloning and characterization of rat and human calpain-5. Biochemical and Biophysical Research Communications, 2004, 324, 46-51.                                                                                                   | 2.1  | 32        |
| 179 | Circulating GFAP and Iba-1 levels are associated with pathophysiological sequelae in the thalamus in a pig model of mild TBI. Scientific Reports, 2020, 10, 13369.                                                                          | 3.3  | 32        |
| 180 | Cell-Specific Upregulation of Survivin after Experimental Traumatic Brain Injury in Rats. Journal of Neurotrauma, 2004, 21, 1183-1195.                                                                                                      | 3.4  | 31        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Detection of protein biomarkers using high-throughput immunoblotting following focal ischemic or penetrating ballistic-like brain injuries in rats. Brain Injury, 2008, 22, 723-732.                                                        | 1.2  | 31        |
| 182 | In vitro <scp>MS</scp> â€based proteomic analysis and absolute quantification of neuronalâ€glial injury<br>biomarkers in cell culture system. Electrophoresis, 2012, 33, 3786-3797.                                                         | 2.4  | 31        |
| 183 | In Vitro Neurotoxicity Resulting from Exposure of Cultured Neural Cells to Several Types of Nanoparticles. Journal of Cell Death, 2017, 10, 117967071769452.                                                                                | 0.8  | 31        |
| 184 | Occurrence and timing of withdrawal of life-sustaining measures in traumatic brain injury patients: a<br>CENTER-TBI study. Intensive Care Medicine, 2021, 47, 1115-1129.                                                                    | 8.2  | 31        |
| 185 | Phenytoin pretreatment prevents hypoxic-ischemic brain damage in neonatal rats. Developmental Brain<br>Research, 1996, 95, 169-175.                                                                                                         | 1.7  | 30        |
| 186 | Cathepsin B mRNA and protein expression following contusion spinal cord injury in rats. Journal of Neurochemistry, 2003, 88, 689-697.                                                                                                       | 3.9  | 30        |
| 187 | Proteomics Studies of Traumatic Brain Injury. International Review of Neurobiology, 2004, 61, 215-240.                                                                                                                                      | 2.0  | 29        |
| 188 | Cell-specific DNA fragmentation may be attenuated by a survivin-dependent mechanism after traumatic brain injury in rats. Experimental Brain Research, 2005, 167, 17-26.                                                                    | 1.5  | 29        |
| 189 | Alpha II Spectrin breakdown products in immature Sprague Dawley rat hippocampus and cortex after traumatic brain injury. Brain Research, 2014, 1574, 105-112.                                                                               | 2.2  | 29        |
| 190 | Novel Mouse Tauopathy Model for Repetitive Mild Traumatic Brain Injury: Evaluation of Long-Term<br>Effects on Cognition and Biomarker Levels After Therapeutic Inhibition of Tau Phosphorylation.<br>Frontiers in Neurology, 2019, 10, 124. | 2.4  | 29        |
| 191 | Serum metabolome associated with severity of acute traumatic brain injury. Nature Communications, 2022, 13, 2545.                                                                                                                           | 12.8 | 29        |
| 192 | Cellular localization and enzymatic activity of cathepsin B after spinal cord injury in the rat.<br>Experimental Neurology, 2005, 193, 19-28.                                                                                               | 4.1  | 28        |
| 193 | Systems Biology and Theranostic Approach to Drug Discovery and Development to Treat Traumatic<br>Brain Injury. Methods in Molecular Biology, 2010, 662, 317-329.                                                                            | 0.9  | 28        |
| 194 | P43/pro-EMAPII: A Potential Biomarker for Discriminating Traumatic Versus Ischemic Brain Injury.<br>Journal of Neurotrauma, 2009, 26, 1295-1305.                                                                                            | 3.4  | 27        |
| 195 | Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization. PLoS ONE, 2020, 15, e0224952.                                                                          | 2.5  | 27        |
| 196 | Elevation of cytoskeletal protein breakdown in aged Wistar rat brain. Neurobiology of Aging, 2006, 27,<br>624-632.                                                                                                                          | 3.1  | 26        |
| 197 | Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post<br>Experimental Traumatic Brain Injury in Rats. Frontiers in Neurology, 2016, 7, 198.                                                              | 2.4  | 26        |
| 198 | Serum-Based Phospho-Neurofilament-Heavy Protein as Theranostic Biomarker in Three Models of<br>Traumatic Brain Injury: An Operation Brain Trauma Therapy Study. Journal of Neurotrauma, 2019, 36,<br>348-359.                               | 3.4  | 26        |

| #   | Article                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 199 | The Role of Blood Biomarkers for Magnetic Resonance Imaging Diagnosis of Traumatic Brain Injury.<br>Medicina (Lithuania), 2020, 56, 87.                                                                                                                                                           | 2.0  | 26        |
| 200 | Single Mild Traumatic Brain Injury Deteriorates Progressive Interhemispheric Functional and Structural Connectivity. Journal of Neurotrauma, 2021, 38, 464-473.                                                                                                                                   | 3.4  | 26        |
| 201 | Comparison of GFAP and UCH-L1 Measurements from Two Prototype Assays: The Abbott i-STAT and ARCHITECT Assays. Neurotrauma Reports, 2021, 2, 193-199.                                                                                                                                              | 1.4  | 26        |
| 202 | Qualitative Versus Quantitative Methods in Psychiatric Research. Methods in Molecular Biology, 2012,<br>829, 49-62.                                                                                                                                                                               | 0.9  | 26        |
| 203 | Surgery versus conservative treatment for traumatic acute subdural haematoma: a prospective,<br>multicentre, observational, comparative effectiveness study. Lancet Neurology, The, 2022, 21, 620-631.                                                                                            | 10.2 | 26        |
| 204 | Leveraging Biomarker Platforms and Systems Biology for Rehabilomics and Biologics Effectiveness Research. PM and R, 2011, 3, S139-47.                                                                                                                                                             | 1.6  | 25        |
| 205 | Protein Biomarkers for Traumatic and Ischemic Brain Injury: From Bench to Bedside. Translational Stroke Research, 2011, 2, 455-462.                                                                                                                                                               | 4.2  | 25        |
| 206 | Proteomic analysis and brainâ€specific systems biology in a rodent model of penetrating ballisticâ€like<br>brain injury. Electrophoresis, 2012, 33, 3693-3704.                                                                                                                                    | 2.4  | 25        |
| 207 | Post-Genomics Nanotechnology Is Gaining Momentum: Nanoproteomics and Applications in Life Sciences. OMICS A Journal of Integrative Biology, 2014, 18, 111-131.                                                                                                                                    | 2.0  | 25        |
| 208 | Overpressure blast injury-induced oxidative stress and neuroinflammation response in rat frontal cortex and cerebellum. Behavioural Brain Research, 2018, 340, 14-22.                                                                                                                             | 2.2  | 25        |
| 209 | Copenhagen Head Injury Ciclosporin Study: A Phase IIa Safety, Pharmacokinetics, and Biomarker Study<br>of Ciclosporin in Severe Traumatic Brain Injury Patients. Journal of Neurotrauma, 2019, 36, 3253-3263.                                                                                     | 3.4  | 25        |
| 210 | Repeated amphetamine treatment induces neurite outgrowth and enhanced amphetamineâ€stimulated<br>dopamine release in rat pheochromocytoma cells (PC12 cells) via a protein kinase C―and mitogen<br>activated protein kinaseâ€dependent mechanism. Journal of Neurochemistry, 2003, 87, 1546-1557. | 3.9  | 24        |
| 211 | Ecstasy Toxicity. Journal of Addictive Diseases, 2006, 25, 115-123.                                                                                                                                                                                                                               | 1.3  | 24        |
| 212 | DRD2 C957T polymorphism is associated with improved 6-month verbal learning following traumatic brain injury. Neurogenetics, 2017, 18, 29-38.                                                                                                                                                     | 1.4  | 24        |
| 213 | Satisfaction with Life after Mild Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 546-554.                                                                                                                                                                           | 3.4  | 24        |
| 214 | Complex Autoantibody Responses Occur following Moderate to Severe Traumatic Brain Injury.<br>Journal of Immunology, 2021, 207, 90-100.                                                                                                                                                            | 0.8  | 24        |
| 215 | Relationship of admission blood proteomic biomarkers levels to lesion type and lesion burden in traumatic brain injury: A CENTER-TBI study. EBioMedicine, 2022, 75, 103777.                                                                                                                       | 6.1  | 24        |
| 216 | Novel Characteristics of Glutamate-Induced Cell Death in Primary Septohippocampal Cultures:<br>Relationship to Calpain and Caspase-3 Protease Activation. Journal of Cerebral Blood Flow and<br>Metabolism, 2000, 20, 550-562.                                                                    | 4.3  | 23        |

| #   | Article                                                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Repeated, intermittent treatment with amphetamine induces neurite outgrowth in rat pheochromocytoma cells (PC12 cells). Brain Research, 2002, 951, 43-52.                                                                                                                                                           | 2.2 | 23        |
| 218 | Serum levels of neuron-specific ubiquitin carboxyl-terminal esterase-L1 predict brain injury in a canine<br>model of hypothermic circulatory arrest. Journal of Thoracic and Cardiovascular Surgery, 2011, 142,<br>902-910.e1.                                                                                      | 0.8 | 23        |
| 219 | Acute Effects of Sport-Related Concussion on Serum Glial Fibrillary Acidic Protein, Ubiquitin<br>C-Terminal Hydrolase L1, Total Tau, and Neurofilament Light Measured by a Multiplex Assay. Journal of<br>Neurotrauma, 2020, 37, 1537-1545.                                                                         | 3.4 | 23        |
| 220 | Biomarkers for Traumatic Brain Injury: Data Standards and Statistical Considerations. Journal of Neurotrauma, 2021, 38, 2514-2529.                                                                                                                                                                                  | 3.4 | 23        |
| 221 | Hormone-induced phosphorylation of the plasma membrane calcium pump in cultured aortic endothelial cells. Archives of Biochemistry and Biophysics, 1991, 289, 103-108.                                                                                                                                              | 3.0 | 22        |
| 222 | The Application of Proteomics to Traumatic Brain and Spinal Cord Injuries. Current Neurology and Neuroscience Reports, 2017, 17, 23.                                                                                                                                                                                | 4.2 | 22        |
| 223 | Latent Profile Analysis of Neuropsychiatric Symptoms and Cognitive Function of Adults 2 Weeks After<br>Traumatic Brain Injury. JAMA Network Open, 2021, 4, e213467.                                                                                                                                                 | 5.9 | 22        |
| 224 | Activation of apoptosis-linked caspase(s) in NMDA-injured brains in neonatal rats. Neurochemistry<br>International, 2000, 36, 119-126.                                                                                                                                                                              | 3.8 | 21        |
| 225 | Global Characterisation of Coagulopathy in Isolated Traumatic Brain Injury (iTBI): A CENTER-TBI<br>Analysis. Neurocritical Care, 2021, 35, 184-196.                                                                                                                                                                 | 2.4 | 21        |
| 226 | Effects of Environmental Tobacco Smoke on Adult Rat Brain Biochemistry. Journal of Molecular<br>Neuroscience, 2010, 41, 165-171.                                                                                                                                                                                    | 2.3 | 20        |
| 227 | Hypothesizing that designer drugs containing cathinones ("bath saltsâ€) have profound<br>neuro-inflammatory effects and dangerous neurotoxic response following human consumption.<br>Medical Hypotheses, 2013, 81, 450-455.                                                                                        | 1.5 | 20        |
| 228 | Toward a New Multi-Dimensional Classification of Traumatic Brain Injury: A Collaborative European<br>NeuroTrauma Effectiveness Research for Traumatic Brain Injury Study. Journal of Neurotrauma, 2020,<br>37, 1002-1010.                                                                                           | 3.4 | 20        |
| 229 | Prediction of Global Functional Outcome and Post-Concussive Symptoms after Mild Traumatic Brain<br>Injury: External Validation of Prognostic Models in the Collaborative European NeuroTrauma<br>Effectiveness Research in Traumatic Brain Injury (CENTER-TBI) Study. Journal of Neurotrauma, 2021, 38,<br>196-209. | 3.4 | 20        |
| 230 | Clibenclamide Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 628-645.                                                                                                                                                                                       | 3.4 | 20        |
| 231 | In-depth characterization of a mouse model of post-traumatic epilepsy for biomarker and drug discovery. Acta Neuropathologica Communications, 2021, 9, 76.                                                                                                                                                          | 5.2 | 20        |
| 232 | Section Review: Central & Peripheral Nervous Systems: Therapeutic potential of calpain inhibitors in neurodegenerative disorders. Expert Opinion on Investigational Drugs, 1996, 5, 1291-1304.                                                                                                                      | 4.1 | 19        |
| 233 | Raising the Bar for Traumatic Brain Injury Biomarker Research: Methods Make a Difference. Journal of Neurotrauma, 2017, 34, 2187-2189.                                                                                                                                                                              | 3.4 | 19        |
| 234 | Temporal Profile of Microtubule-Associated Protein 2: A Novel Indicator of Diffuse Brain Injury<br>Severity and Early Mortality after Brain Trauma. Journal of Neurotrauma, 2018, 35, 32-40.                                                                                                                        | 3.4 | 19        |

| #   | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Tracheal intubation in traumatic brain injury: a multicentre prospective observational study. British<br>Journal of Anaesthesia, 2020, 125, 505-517.                                                                     | 3.4 | 19        |
| 236 | Penetrating Traumatic Brain Injury Triggers Dysregulation of Cathepsin B Protein Levels Independent<br>of Cysteine Protease Activity in Brain and Cerebral Spinal Fluid. Journal of Neurotrauma, 2020, 37,<br>1574-1586. | 3.4 | 19        |
| 237 | Blood-based traumatic brain injury biomarkers – Clinical utilities and regulatory pathways in the<br>United States, Europe and Canada. Expert Review of Molecular Diagnostics, 2021, 21, 1303-1321.                      | 3.1 | 19        |
| 238 | Calpain I activates Ca2+ transport by the reconstituted erythrocyte Ca2+ pump. Journal of Membrane<br>Biology, 1989, 112, 233-245.                                                                                       | 2.1 | 18        |
| 239 | Benzenesulfonamide derivatives of 2-substituted 4H-3,1-benzoxazin-4-ones and benzthiazin-4-ones as inhibitors of complement C1r protease. Bioorganic and Medicinal Chemistry Letters, 1999, 9, 815-820.                  | 2.2 | 18        |
| 240 | Baicalein enhances the effect of low dose Levodopa on the gait deficits and protects dopaminergic neurons in experimental Parkinsonism. Journal of Clinical Neuroscience, 2019, 64, 242-251.                             | 1.5 | 18        |
| 241 | Association of Posttraumatic Epilepsy With 1-Year Outcomes After Traumatic Brain Injury. JAMA<br>Network Open, 2021, 4, e2140191.                                                                                        | 5.9 | 18        |
| 242 | Methods in Drug Abuse Models: Comparison of Different Models of Methamphetamine Paradigms.<br>Methods in Molecular Biology, 2012, 829, 269-278.                                                                          | 0.9 | 17        |
| 243 | Physiological and Pathological Actions of Calpains in Glutamatergic Neurons. Science Signaling, 2008, 1, tr3.                                                                                                            | 3.6 | 17        |
| 244 | Enhanced amphetamine-mediated dopamine release develops in PC12 cells after repeated amphetamine treatment. European Journal of Pharmacology, 2002, 451, 27-35.                                                          | 3.5 | 16        |
| 245 | Cytochrome c translocation does not lead to caspase activation in maitotoxin-treated SH-SY5Y neuroblastoma cells. Neurochemistry International, 2003, 42, 517-523.                                                       | 3.8 | 16        |
| 246 | Identification of tyrosine nitration in UCH‣1 and GAPDH. Electrophoresis, 2011, 32, 1692-1705.                                                                                                                           | 2.4 | 16        |
| 247 | Missing Data in Prediction Research: A Five-Step Approach for Multiple Imputation, Illustrated in the CENTER-TBI Study. Journal of Neurotrauma, 2021, 38, 1842-1857.                                                     | 3.4 | 16        |
| 248 | Multi-Modal Biomarkers of Repetitive Head Impacts and Traumatic Encephalopathy Syndrome: A<br>Clinicopathological Case Series. Journal of Neurotrauma, 2022, 39, 1195-1213.                                              | 3.4 | 16        |
| 249 | Molecular consequences of activated microglia in the brain: overactivation induces apoptosis.<br>Journal of Neurochemistry, 2008, 77, 182-189.                                                                           | 3.9 | 15        |
| 250 | Lestaurtinib (CEP-701) modulates the effects of early life hypoxic seizures on cognitive and emotional behaviors in immature rats. Epilepsy and Behavior, 2019, 92, 332-340.                                             | 1.7 | 15        |
| 251 | Validity of the Brief Test of Adult Cognition by Telephone in Level 1 Trauma Center Patients Six Months<br>Post-Traumatic Brain Injury: A TRACK-TBI Study. Journal of Neurotrauma, 2021, 38, 1048-1059.<br>              | 3.4 | 15        |
| 252 | A purine nucleoside phosphorylase (PNP) inhibitor induces apoptosis via caspase-3-like protease activity in MOLT-4 T cells. Immunopharmacology, 1997, 37, 231-244.                                                       | 2.0 | 14        |

| #   | Article                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Translation of Neurological Biomarkers to Clinically Relevant Platforms. Methods in Molecular<br>Biology, 2009, 566, 303-313.                                                                                                       | 0.9 | 14        |
| 254 | Inhibition of LPS toxicity by hepatic argininosuccinate synthase (ASS): Novel roles for ASS in innate immune responses to bacterial infection. International Immunopharmacology, 2011, 11, 1180-1188.                               | 3.8 | 14        |
| 255 | The Functional and Structural Changes in the Basilar Artery Due to Overpressure Blast Injury. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1950-1956.                                                                   | 4.3 | 14        |
| 256 | Anti-LPS Test Strip for the Detection of Food Contaminated with Salmonella and E. coli. Journal of Microbial & Biochemical Technology, 2011, 03, .                                                                                  | 0.2 | 14        |
| 257 | Dicyclomine, an M1 Muscarinic Antagonist, Reduces Biomarker Levels, But Not Neuronal Degeneration,<br>in Fluid Percussion Brain Injury. Journal of Neurotrauma, 2008, 25, 1355-1365.                                                | 3.4 | 13        |
| 258 | Translating Biomarkers Research to Clinical Care: Applications and Issues for Rehabilomics. PM and R, 2011, 3, S31-8.                                                                                                               | 1.6 | 13        |
| 259 | Glial fibrillary acidic protein: A promising biomarker in pediatric brain injury*. Pediatric Critical Care<br>Medicine, 2011, 12, 603-604.                                                                                          | 0.5 | 13        |
| 260 | Protein Characterization of Extracellular Microvesicles/Exosomes Released from<br>Cytotoxin-Challenged Rat Cerebrocortical Mixed Culture and Mouse N2a Cells. Molecular<br>Neurobiology, 2018, 55, 2112-2124.                       | 4.0 | 13        |
| 261 | Traumatic brain injury and methamphetamine: A double-hit neurological insult. Journal of the<br>Neurological Sciences, 2020, 411, 116711.                                                                                           | 0.6 | 13        |
| 262 | Alpha-Mercaptoacrylic Acid Derivatives as Novel Selective Calpain Inhibitors. Advances in Experimental<br>Medicine and Biology, 1996, 389, 95-102.                                                                                  | 1.6 | 13        |
| 263 | The Effect of Chronic Methamphetamine Exposure on the Hippocampal and Olfactory Bulb Neuroproteomes of Rats. PLoS ONE, 2016, 11, e0151034.                                                                                          | 2.5 | 12        |
| 264 | Quantitative pupillometry and neuron-specific enolase independently predict return of spontaneous circulation following cardiogenic out-of-hospital cardiac arrest: a prospective pilot study. Scientific Reports, 2018, 8, 15964.  | 3.3 | 12        |
| 265 | Predictors of Access to Rehabilitation in the Year Following Traumatic Brain Injury: A European<br>Prospective and Multicenter Study. Neurorehabilitation and Neural Repair, 2020, 34, 814-830.                                     | 2.9 | 12        |
| 266 | Comparison of Care System and Treatment Approaches for Patients with Traumatic Brain Injury in<br>China versus Europe: A CENTER-TBI Survey Study. Journal of Neurotrauma, 2020, 37, 1806-1817.                                      | 3.4 | 12        |
| 267 | Protein Degradome of Spinal Cord Injury: Biomarkers and Potential Therapeutic Targets. Molecular<br>Neurobiology, 2020, 57, 2702-2726.                                                                                              | 4.0 | 12        |
| 268 | Frequency of fatigue and its changes in the first 6Âmonths after traumatic brain injury: results from<br>the CENTER-TBI study. Journal of Neurology, 2021, 268, 61-73.                                                              | 3.6 | 12        |
| 269 | Ageing is associated with maladaptive immune response and worse outcome after traumatic brain injury. Brain Communications, 2022, 4, fcac036.                                                                                       | 3.3 | 12        |
| 270 | Phosphorylated and non-phosphorylated connexin-32 molecules in gap junction plaques are protected<br>against calpain proteolysis after phosphorylation by protein kinase C. Biochemical Society<br>Transactions, 1994, 22, 793-796. | 3.4 | 11        |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Systems biomarkers as acute diagnostics and chronic monitoring tools for traumatic brain injury. , 2013, , .                                                                                                         |     | 11        |
| 272 | Lateral Ventricle Volume Asymmetry Predicts Midline Shift in Severe Traumatic Brain Injury. Journal of Neurotrauma, 2015, 32, 1307-1311.                                                                             | 3.4 | 11        |
| 273 | Anti-Pituitary and Anti-Hypothalamus Autoantibody Associations with Inflammation and Persistent<br>Hypogonadotropic Hypogonadism in Men with Traumatic Brain Injury. Journal of Neurotrauma, 2020,<br>37, 1609-1626. | 3.4 | 11        |
| 274 | Compensatory functional connectome changes in a rat model of traumatic brain injury. Brain<br>Communications, 2021, 3, fcab244.                                                                                      | 3.3 | 11        |
| 275 | Generation and Release of Neurogranin, Vimentin, and MBP Proteolytic Peptides, Following Traumatic<br>Brain Injury. Molecular Neurobiology, 2022, 59, 731-747.                                                       | 4.0 | 11        |
| 276 | Biomarker Identification in Psychiatric Disorders. Journal of Psychiatric Practice, 2015, 21, 37-48.                                                                                                                 | 0.7 | 10        |
| 277 | PrPC expression and calpain activity independently mediate the effects of closed head injury in mice.<br>Behavioural Brain Research, 2018, 340, 29-40.                                                               | 2.2 | 10        |
| 278 | Drug Repurposing in Neurological Disorders: Implications for Neurotherapy in Traumatic Brain Injury.<br>Neuroscientist, 2021, 27, 620-649.                                                                           | 3.5 | 10        |
| 279 | Age-Related Intraneuronal Elevation of αII-Spectrin Breakdown Product SBDP120 in Rodent Forebrain<br>Accelerates in 3×Tg-AD Mice. PLoS ONE, 2012, 7, e37599.                                                         | 2.5 | 10        |
| 280 | Mitoquinone Helps Combat the Neurological, Cognitive, and Molecular Consequences of Open Head<br>Traumatic Brain Injury at Chronic Time Point. Biomedicines, 2022, 10, 250.                                          | 3.2 | 10        |
| 281 | Mitoquinone supplementation alleviates oxidative stress and pathologic outcomes following<br>repetitive mild traumatic brain injury at a chronic time point. Experimental Neurology, 2022, 351, 113987.              | 4.1 | 10        |
| 282 | Initial Biological Qualification of SBDP-145 as a Biomarker of Compound-Induced Neurodegeneration in the Rat. Toxicological Sciences, 2014, 141, 398-408.                                                            | 3.1 | 9         |
| 283 | Evaluation of Diffusion Tensor Imaging and Fluid Based Biomarkers in a Large Animal Trial of<br>Cyclosporine in Focal Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 1870-1878.                           | 3.4 | 9         |
| 284 | Tractography-Pathology Correlations in Traumatic Brain Injury: A TRACK-TBI Study. Journal of<br>Neurotrauma, 2021, 38, 1620-1631.                                                                                    | 3.4 | 9         |
| 285 | Operation Brain Trauma Therapy: An Exploratory Study of Levetiracetam Treatment Following Mild<br>Traumatic Brain Injury in the Micro Pig. Frontiers in Neurology, 2020, 11, 586958.                                 | 2.4 | 9         |
| 286 | Preoperative-Induced Mild Hypothermia Attenuates Neuronal Damage in a Rat Subdural Hematoma<br>Model. Acta Neurochirurgica Supplementum, 2013, 118, 77-81.                                                           | 1.0 | 9         |
| 287 | Persistent Ca2+-induced activation of erythrocyte membrane Ca2+-ATPase unrelated to calpain proteolysis. Archives of Biochemistry and Biophysics, 1990, 279, 78-86.                                                  | 3.0 | 8         |
| 288 | Binding and aggregation of human μ-calpain by terbium ion. BBA - Proteins and Proteomics, 1996, 1292, 9-14.                                                                                                          | 2.1 | 8         |

| #   | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | Calcium/calmodulin-dependent protein kinase inhibition potentiates thapsigargin-mediated cell death<br>in SH-SY5Y human neuroblastoma cells. Neuroscience Letters, 2001, 301, 99-102.                                                               | 2.1 | 8         |
| 290 | Hypothesis: Exosomal microRNAs as potential biomarkers for schizophrenia. Medical Hypotheses, 2017, 103, 21-25.                                                                                                                                     | 1.5 | 8         |
| 291 | Topically applied adipose-derived mesenchymal stem cell treatment in experimental focal cerebral ischemia. Journal of Clinical Neuroscience, 2020, 71, 226-233.                                                                                     | 1.5 | 8         |
| 292 | Smaller Regional Brain Volumes Predict Posttraumatic Stress Disorder at 3 Months After Mild<br>Traumatic Brain Injury. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2021, 6,<br>352-359.                                         | 1.5 | 8         |
| 293 | Primary versus early secondary referral to a specialized neurotrauma center in patients with<br>moderate/severe traumatic brain injury: a CENTER TBI study. Scandinavian Journal of Trauma,<br>Resuscitation and Emergency Medicine, 2021, 29, 113. | 2.6 | 8         |
| 294 | Informed consent procedures in patients with an acute inability to provide informed consent: Policy and practice in the CENTER-TBI study. Journal of Critical Care, 2020, 59, 6-15.                                                                 | 2.2 | 8         |
| 295 | Spillway-Induced Salmon Head Injury Triggers the Generation of Brain αII-Spectrin Breakdown Product<br>Biomarkers Similar to Mammalian Traumatic Brain Injury. PLoS ONE, 2009, 4, e4491.                                                            | 2.5 | 7         |
| 296 | Comparing levels of biochemical markers in CSF from cannulated and non-cannulated rats. Journal of Neuroscience Methods, 2010, 192, 249-253.                                                                                                        | 2.5 | 7         |
| 297 | Recent updates on drug abuse analyzed by neuroproteomics studies: Cocaine, Methamphetamine and MDMA. Translational Proteomics, 2014, 3, 38-52.                                                                                                      | 1.2 | 7         |
| 298 | Autoimmunity and Traumatic Brain Injury. Current Physical Medicine and Rehabilitation Reports, 2017, 5, 22-29.                                                                                                                                      | 0.8 | 7         |
| 299 | Novel Peptidomic Approach for Identification of Low and High Molecular Weight Tauopathy Peptides<br>Following Calpain Digestion, and Primary Culture Neurotoxic Challenges. International Journal of<br>Molecular Sciences, 2019, 20, 5213.         | 4.1 | 7         |
| 300 | Elevation of Pro-inflammatory and Anti-inflammatory Cytokines in Rat Serum after Acute<br>Methamphetamine Treatment and Traumatic Brain Injury. Journal of Molecular Neuroscience, 2022, 72,<br>158-168.                                            | 2.3 | 7         |
| 301 | Central Curation of Glasgow Outcome Scale-Extended Data: Lessons Learned from TRACK-TBI. Journal of Neurotrauma, 2021, 38, 2419-2434.                                                                                                               | 3.4 | 7         |
| 302 | Combined GFAP, NFL, Tau, and UCH-L1 panel increases prediction of outcomes in neonatal encephalopathy. Pediatric Research, 2023, 93, 1199-1207.                                                                                                     | 2.3 | 7         |
| 303 | The effect of calmodulin on the interaction of carbodiimides with the purified human erythrocyte                                                                                                                                                    |     |           |

| #   | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Altered monoaminergic levels, spasticity, and balance disability following repetitive blast-induced traumatic brain injury in rats. Brain Research, 2020, 1747, 147060.                                                                      | 2.2 | 6         |
| 308 | Ultra-early serum concentrations of neuronal and astroglial biomarkers predict poor neurological<br>outcome after out-of-hospital cardiac arrest—a pilot neuroprognostic study. Resuscitation Plus,<br>2021, 7, 100133.                      | 1.7 | 6         |
| 309 | Temporal relationships between de novo protein synthesis, calpain and caspase 3â€like protease<br>activation, and DNA fragmentation during apoptosis in septoâ€hippocampal cultures. Journal of<br>Neuroscience Research, 1998, 52, 505-520. | 2.9 | 6         |
| 310 | Traumatic Brain Injury Biomarkers: From Pipeline to Diagnostic Assay Development. Methods in<br>Molecular Biology, 2009, 566, 293-302.                                                                                                       | 0.9 | 6         |
| 311 | Methods in Tobacco Abuse: Proteomic Changes Following Second-Hand Smoke Exposure. Methods in<br>Molecular Biology, 2012, 829, 329-348.                                                                                                       | 0.9 | 6         |
| 312 | Tailoring Multi-Dimensional Outcomes to Level of Functional Recovery after Traumatic Brain Injury.<br>Journal of Neurotrauma, 2022, 39, 1363-1381.                                                                                           | 3.4 | 6         |
| 313 | A Repetitive Concussive Head Injury Model in Mice. Journal of Visualized Experiments, 2016, , .                                                                                                                                              | 0.3 | 5         |
| 314 | Case Study of a Breacher: Investigation of Neurotrauma Biomarker Levels, Self-reported Symptoms,<br>and Functional MRI Analysis Before and After Exposure to Measured Low-Level Blast. Military<br>Medicine, 2020, 185, e513-e517.           | 0.8 | 5         |
| 315 | Kollidon VA64 Treatment in Traumatic Brain Injury: Operation Brain Trauma Therapy. Journal of Neurotrauma, 2021, 38, 2454-2472.                                                                                                              | 3.4 | 5         |
| 316 | Bioinformatics for Traumatic Brain Injury: Proteomic Data Mining. Springer Optimization and Its Applications, 2007, , 363-387.                                                                                                               | 0.9 | 5         |
| 317 | Methods in Drug Abuse Neuroproteomics: Methamphetamine Psychoproteome. Methods in Molecular<br>Biology, 2009, 566, 217-228.                                                                                                                  | 0.9 | 5         |
| 318 | Methods in Systems Biology of Experimental Methamphetamine Drug Abuse. Methods in Molecular<br>Biology, 2010, 662, 303-316.                                                                                                                  | 0.9 | 5         |
| 319 | Topical Therapy with Mesenchymal Stem Cells Following an Acute Experimental Head Injury Has<br>Benefits in Motor-Behavioral Tests for Rodents. Acta Neurochirurgica Supplementum, 2016, 122, 21-24.                                          | 1.0 | 5         |
| 320 | Questionnaires vs Interviews for the Assessment of Global Functional Outcomes After Traumatic<br>Brain Injury. JAMA Network Open, 2021, 4, e2134121.                                                                                         | 5.9 | 5         |
| 321 | Neurocognitive correlates of probable posttraumatic stress disorder following traumatic brain injury. Brain and Spine, 2022, 2, 100854.                                                                                                      | 0.1 | 5         |
| 322 | Biomarkers in Moderate to Severe Pediatric Traumatic Brain Injury: A Review of the Literature.<br>Pediatric Neurology, 2022, 130, 60-68.                                                                                                     | 2.1 | 5         |
| 323 | Health-related quality of life after traumatic brain injury: deriving value sets for the QOLIBRI-OS for<br>Italy, The Netherlands and The United Kingdom. Quality of Life Research, 2020, 29, 3095-3107.                                     | 3.1 | 4         |
| 324 | Persistent postconcussive symptoms in children and adolescents with mild traumatic brain injury receiving initial head computed tomography. Journal of Neurosurgery: Pediatrics, 2021, 27, 538-547.                                          | 1.3 | 4         |

| #   | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 325 | Blood-Based Brain and Global Biomarker Changes after Combined Hypoxemia and Hemorrhagic Shock<br>in a Rat Model of Penetrating Ballistic-Like Brain Injury. Neurotrauma Reports, 2021, 2, 370-380.                              | 1.4 | 4         |
| 326 | Engineered Multifunctional Nanotools for Biological Applications. Methods in Molecular Biology, 2011, 790, 203-214.                                                                                                             | 0.9 | 4         |
| 327 | Extended Coagulation Profiling in Isolated Traumatic Brain Injury: A CENTER-TBI Analysis.<br>Neurocritical Care, 2022, 36, 927-941.                                                                                             | 2.4 | 4         |
| 328 | Calmodulin-Binding Proteome in the Brain. Methods in Molecular Biology, 2009, 566, 181-190.                                                                                                                                     | 0.9 | 3         |
| 329 | Biomarkers of Traumatic Brain Injury in the Geriatric Population. Current Translational Geriatrics and Experimental Gerontology Reports, 2012, 1, 129-134.                                                                      | 0.7 | 3         |
| 330 | Neuroproteomics 101. Translational Proteomics, 2014, 3, A1-A2.                                                                                                                                                                  | 1.2 | 3         |
| 331 | Neurological Exam in Rats Following Stroke and Traumatic Brain Injury. Methods in Molecular<br>Biology, 2019, 2011, 371-381.                                                                                                    | 0.9 | 3         |
| 332 | Comparing the Quality of Life after Brain Injury-Overall Scale and Satisfaction with Life Scale as<br>Outcome Measures for Traumatic Brain Injury Research. Journal of Neurotrauma, 2021, 38, 3352-3363.                        | 3.4 | 3         |
| 333 | Calpain I Activates Ca2+ Transport by the Human Erythrocyte Plasma Membrane Calcium Pump.<br>Advances in Experimental Medicine and Biology, 1990, 269, 175-180.                                                                 | 1.6 | 3         |
| 334 | Vibrational Spectroscopy for the Triage of Traumatic Brain Injury Computed Tomography Priority and<br>Hospital Admissions. Journal of Neurotrauma, 2022, 39, 773-783.                                                           | 3.4 | 3         |
| 335 | Can We Cluster ICU Treatment Strategies for Traumatic Brain Injury by Hospital Treatment Preferences?. Neurocritical Care, 2021, , 1.                                                                                           | 2.4 | 3         |
| 336 | Association of day-of-injury plasma glial fibrillary acidic protein concentration and six-month<br>posttraumatic stress disorder in patients with mild traumatic brain injury.<br>Neuropsychopharmacology, 2022, 47, 2300-2308. | 5.4 | 3         |
| 337 | Using serum biomarkers to diagnose, assess, treat, and predict outcome after pediatric TBI. , 2010, , 36-53.                                                                                                                    |     | 2         |
| 338 | Examining the Neural and Astroglial Protective Effects of Cellular Prion Protein Expression and Cell<br>Death Protease Inhibition in Mouse Cerebrocortical Mixed Cultures. Molecular Neurobiology, 2016,<br>53, 4821-4832.      | 4.0 | 2         |
| 339 | Effect of Second-Hand Tobacco Smoke on the Nitration of Brain Proteins: A Systems Biology and<br>Bioinformatics Approach. Methods in Molecular Biology, 2017, 1598, 353-372.                                                    | 0.9 | 2         |
| 340 | MicroRNAs as potential prognosticators of neurological outcome in out-of-hospital cardiac arrest patients. Biomarkers in Medicine, 2017, 11, 1113-1123.                                                                         | 1.4 | 2         |
| 341 | Peptidomics and traumatic brain injury: biomarker utilities for a theragnostic approach. , 2020, , 419-430.                                                                                                                     |     | 2         |
| 342 | Potentiating Hemorrhage in a Periadolescent Rat Model of Closed-Head Traumatic Brain Injury<br>Worsens Hyperexcitability but Not Behavioral Deficits. International Journal of Molecular Sciences,<br>2021, 22, 6456.           | 4.1 | 2         |

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | Protein Biomarkers in Traumatic Brain Injury: An Omics Approach. , 2014, , 42-75.                                                                                                                                       |     | 2         |
| 344 | Characterization and standardization of multiassay platforms for four commonly studied traumatic<br>brain injury protein biomarkers: a TBI Endpoints Development Study. Biomarkers in Medicine, 2021, 15,<br>1721-1732. | 1.4 | 2         |
| 345 | Assaying Proteases in Cellular Environments. Current Protocols in Protein Science, 2002, 27, Unit 21.12.                                                                                                                | 2.8 | 1         |
| 346 | Generation of aberrant forms of DFF40 concurrent with caspase-3 activation during acute and chronic liver injury in rats. Biochemical and Biophysical Research Communications, 2006, 350, 457-462.                      | 2.1 | 1         |
| 347 | Diagnostic protein biomarkers for severe, moderate and mild traumatic brain injury. Proceedings of SPIE, 2011, , .                                                                                                      | 0.8 | 1         |
| 348 | Neuro-proteomics and Neuro-systems Biology in the Quest of TBI Biomarker Discovery. , 2014, , 3-41.                                                                                                                     |     | 1         |
| 349 | Calpain Zymography: General Methodology and Protocol. Methods in Molecular Biology, 2017, 1626, 279-285.                                                                                                                | 0.9 | 1         |
| 350 | Neuropsychological testing. , 2020, , 397-409.                                                                                                                                                                          |     | 1         |
| 351 | P43/pro-EMAP-II: A POTENTIAL BIOMARKER FOR DISCRIMINATING TRAUMATIC VERSUS ISCHEMIC BRAIN<br>INJURY. Journal of Neurotrauma, 0, , 110306202455053.                                                                      | 3.4 | 1         |
| 352 | The TRACK-TBI Approach: Redefining Severity and Outcome Assessments. , 2018, , 81-100.                                                                                                                                  |     | 1         |
| 353 | Chapter 9 Intracellular calcium-binding proteins. Principles of Medical Biology, 1996, , 255-274.                                                                                                                       | 0.1 | Ο         |
| 354 | Utility of biomarkers for diagnosis and prognosis of traumatic brain injury. , 0, , 103-113.                                                                                                                            |     | 0         |
| 355 | Biomarkers for CNS Injury and Regeneration. , 2015, , 401-410.                                                                                                                                                          |     | Ο         |
| 356 | Imaging Neural Plasticity following Brain Injury. Neural Plasticity, 2017, 2017, 1-2.                                                                                                                                   | 2.2 | 0         |
| 357 | Autoantibodies in central nervous system trauma: new frontiers for diagnosis and prognosis biomarkers. , 2020, , 431-451.                                                                                               |     | 0         |
| 358 | 1463: EARLY BRAIN-SPECIFIC BIOMARKERS MAY AID IN NEUROPROGNOSTICATION IN OUT-OF-HOSPITAL CARDIAC ARREST. Critical Care Medicine, 2020, 48, 707-707.                                                                     | 0.9 | 0         |
| 359 | Data Mining Strategies Applied in Brain Injury Models. Springer Optimization and Its Applications, 2012, , 1-13.                                                                                                        | 0.9 | 0         |
| 360 | Blast brain injury elevates catecholamine biosynthesis in the rat adrenal medulla. FASEB Journal, 2012, 26, 1094.6.                                                                                                     | 0.5 | 0         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 361 | Detection of Proteolytic Enzymes Using Protein Substrates. , 1999, , 49-62.                                                                                                                                                                                  |     | 0         |
| 362 | Molecular Mechanisms and Biomarker Perspective of MicroRNAs in Traumatic Brain Injury. , 2014, ,<br>76-115.                                                                                                                                                  |     | 0         |
| 363 | Necrosis, Apoptosis and Autophagy in Acute Brain Injury: The Utilities of Biomarkers. , 2014, , 116-133.                                                                                                                                                     |     | 0         |
| 364 | Autoimmunity Responses in Traumatic Brain Injury and Spinal Cord Injury. , 2018, , 461-476.                                                                                                                                                                  |     | 0         |
| 365 | Proteomics-Based Strategies to Define Brain Tissue Biomarkers of Closed Head, Mild Traumatic Brain<br>Injury in Translational Rodent Models. , 2018, , 315-330.                                                                                              |     | 0         |
| 366 | MicroRNA Biomarkers in Traumatic Brain Injury. , 2018, , 261-268.                                                                                                                                                                                            |     | 0         |
| 367 | CTE: The Hidden Risk of Playing Contact Sports. Frontiers for Young Minds, 0, 7, .                                                                                                                                                                           | 0.8 | 0         |
| 368 | Investigating TBI Using Animal Models. Frontiers for Young Minds, 0, 8, .                                                                                                                                                                                    | 0.8 | 0         |
| 369 | 358â€The relationship between serum biomarkers of traumatic brain injury (TBI) and magnetic resonance<br>imaging (MRI) in patients discharged from the emergency department (ED) with a normal acute CT.<br>Emergency Medicine Journal, 2020, 37, 822.1-822. | 1.0 | 0         |
| 370 | Predicting Clinical Outcomes 7–10 Years after Severe Traumatic Brain Injury: Exploring the Prognostic<br>Utility of the IMPACT Lab Model and Cerebrospinal Fluid UCH-L1 and MAP-2. Neurocritical Care, 2022, , .                                             | 2.4 | 0         |