Yichen Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6866239/publications.pdf Version: 2024-02-01

УІСНЕМ МЛІ

#	Article	IF	CITATIONS
1	Virtual histological staining of unlabelled tissue-autofluorescence images via deep learning. Nature Biomedical Engineering, 2019, 3, 466-477.	22.5	397
2	Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery. Optica, 2018, 5, 704.	9.3	247
3	Deep learning in holography and coherent imaging. Light: Science and Applications, 2019, 8, 85.	16.6	174
4	Three-dimensional virtual refocusing of fluorescence microscopy images using deep learning. Nature Methods, 2019, 16, 1323-1331.	19.0	172
5	Lensless digital holographic microscopy and its applications in biomedicine and environmental monitoring. Methods, 2018, 136, 4-16.	3.8	142
6	A deep learning-enabled portable imaging flow cytometer for cost-effective, high-throughput, and label-free analysis of natural water samples. Light: Science and Applications, 2018, 7, 66.	16.6	131
7	Edge sparsity criterion for robust holographic autofocusing. Optics Letters, 2017, 42, 3824.	3.3	122
8	Bright-field holography: cross-modality deep learning enables snapshot 3D imaging with bright-field contrast using a single hologram. Light: Science and Applications, 2019, 8, 25.	16.6	98
9	Performance of ultra-thin SOI-based resonators for sensing applications. Optics Express, 2014, 22, 14166.	3.4	91
10	Deep-Learning-Based Image Reconstruction and Enhancement in Optical Microscopy. Proceedings of the IEEE, 2020, 108, 30-50.	21.3	90
11	Sparsity-based multi-height phase recovery in holographic microscopy. Scientific Reports, 2016, 6, 37862.	3.3	81
12	Resolution enhancement in scanning electron microscopy using deep learning. Scientific Reports, 2019, 9, 12050.	3.3	78
13	Rapid, portable and cost-effective yeast cell viability and concentration analysis using lensfree on-chip microscopy and machine learning. Lab on A Chip, 2016, 16, 4350-4358.	6.0	59
14	Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning. ACS Photonics, 2018, 5, 4617-4627.	6.6	59
15	Deep Learning Enables High-Throughput Analysis of Particle-Aggregation-Based Biosensors Imaged Using Holography. ACS Photonics, 2019, 6, 294-301.	6.6	53
16	Compact Shielding of Graphene Monolayer Leads to Extraordinary SERS-Active Substrate with Large-Area Uniformity and Long-Term Stability. Scientific Reports, 2015, 5, 17167.	3.3	37
17	Color calibration and fusion of lens-free and mobile-phone microscopy images for high-resolution and accurate color reproduction. Scientific Reports, 2016, 6, 27811.	3.3	37
18	Deep learningâ€based color holographic microscopy. Journal of Biophotonics, 2019, 12, e201900107.	2.3	36

YICHEN WU

#	Article	IF	CITATIONS
19	Demosaiced pixel super-resolution for multiplexed holographic color imaging. Scientific Reports, 2016, 6, 28601.	3.3	34
20	Deep-Learning-Based Virtual Refocusing of Images Using an Engineered Point-Spread Function. ACS Photonics, 2021, 8, 2174-2182.	6.6	15
21	Dynamic Imaging and Characterization of Volatile Aerosols in E-Cigarette Emissions Using Deep Learning-Based Holographic Microscopy. ACS Sensors, 2021, 6, 2403-2410.	7.8	12
22	Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains. Journal of Biophotonics, 2019, 12, e201800335.	2.3	9
23	A robust holographic autofocusing criterion based on edge sparsity: Comparison of Gini index and Tamura coefficient for holographic autofocusing based on the edge sparsity of the complex optical wavefront. , 2018, , .		5
24	Mobile Microscopy and Machine Learning Provide Accurate and High-throughput Monitoring of Air Quality. , 2017, , .		3
25	Holographic Reconstruction with Bright-field Microscopy Contrast using Cross-Modality Deep Learning. , 2019, , .		1
26	Deep Learning to Refocus 3D Images. Optics and Photonics News, 2020, 31, 57.	0.5	1
27	Color Holographic Microscopy Using a Deep Neural Network. , 2020, , .		1
28	Deep-Z: 3D Virtual Refocusing of Fluorescence Images Using Deep Learning. , 2020, , .		1
29	Fusion of lens-free microscopy and mobile-phone microscopy images for high-color-accuracy and high-resolution pathology imaging. Proceedings of SPIE, 2017, , .	0.8	0
30	Yeast viability and concentration analysis using lens-free computational microscopy and machine learning. , 2017, , .		0
31	Sparsity-based On-chip Holographic Microscopy. , 2017, , .		0
32	Spatial mapping and analysis of aerosols during a forest fire using computational mobile microscopy. , 2018, , .		0
33	Label-free Bio-aerosol Sensing Using On-Chip Holographic Microscopy and Deep Learning. , 2019, , .		0
34	Portable Imaging Flow cytometer Using Deep Learning based Holographic Image Reconstruction. , 2019, , .		0
35	Particle-Aggregation Based Virus Sensor Using Deep Learning and Lensless Digital Holography. , 2019, ,		0
36	An absorbance spectrum estimation-based accurate colorization method for holographic imaging of pathology slides. , 2019, , .		0

#	Article	IF	CITATIONS
37	Deep Learning-based Virtual Refocusing of Fluorescence Microscopy Images for Neuron Imaging in 3D. , 2020, , .		0
38	Resolution Enhancement in Scanning Electron Microscopy using Deep Learning. , 2020, , .		0
39	Dynamic imaging and characterization of volatile aerosols using deep learning-based holographic microscopy. , 2021, , .		0