
Eridan Rocha-Ferreira

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6865717/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New possibilities for neuroprotection in neonatal hypoxic-ischemic encephalopathy. European Journal of Pediatrics, 2022, 181, 875-887.	2.7	31
2	Induction of Mitochondrial Fragmentation and Mitophagy after Neonatal Hypoxia–Ischemia. Cells, 2022, 11, 1193.	4.1	5
3	Maternal and fetal serum concentrations of magnesium after administration of a 6â€g bolus dose of magnesium sulfate (<scp>MgSO₄</scp>) to women with imminent preterm delivery. Acta Obstetricia Et Gynecologica Scandinavica, 2022, 101, 856-861.	2.8	5
4	Temporal brain transcriptome analysis reveals key pathological events after germinal matrix hemorrhage in neonatal rats. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 1632-1649.	4.3	9
5	Neuroprotection offered by mesenchymal stem cells in perinatal brain injury: Role of mitochondria, inflammation, and reactive oxygen species. Journal of Neurochemistry, 2021, 158, 59-73.	3.9	38
6	The selective alpha7 nicotinic acetylcholine receptor agonist AR-R17779 does not affect ischemia–reperfusion brain injury in mice. Bioscience Reports, 2021, 41, .	2.4	3
7	Single-cell atlas reveals meningeal leukocyte heterogeneity in the developing mouse brain. Genes and Development, 2021, 35, 1190-1207.	5.9	18
8	Function and Biomarkers of the Blood-Brain Barrier in a Neonatal Germinal Matrix Haemorrhage Model. Cells, 2021, 10, 1677.	4.1	5
9	Type 2 Innate Lymphoid Cells Accumulate in the Brain After Hypoxia-Ischemia but Do Not Contribute to the Development of Preterm Brain Injury. Frontiers in Cellular Neuroscience, 2020, 14, 249.	3.7	8
10	A Model of Germinal Matrix Hemorrhage in Preterm Rat Pups. Frontiers in Cellular Neuroscience, 2020, 14, 535320.	3.7	11
11	Neuroprotective Effects of Diabetes Drugs for the Treatment of Neonatal Hypoxia-Ischemia Encephalopathy. Frontiers in Cellular Neuroscience, 2020, 14, 112.	3.7	8
12	Curcumin: Novel Treatment in Neonatal Hypoxic-Ischemic Brain Injury. Frontiers in Physiology, 2019, 10, 1351.	2.8	24
13	Argininosuccinic aciduria fosters neuronal nitrosative stress reversed by Asl gene transfer. Nature Communications, 2018, 9, 3505.	12.8	34
14	Neuroprotective exendin-4 enhances hypothermia therapy in a model of hypoxic-ischaemic encephalopathy. Brain, 2018, 141, 2925-2942.	7.6	35
15	The duration of hypothermia affects short-term neuroprotection in a mouse model of neonatal hypoxic ischaemic injury. PLoS ONE, 2018, 13, e0199890.	2.5	18
16	Lymphocytes Contribute to the Pathophysiology of Neonatal Brain Injury. Frontiers in Neurology, 2018, 9, 159.	2.4	37
17	Extracellular signalâ€regulated kinase 2 has duality in function between neuronal and astrocyte expression following neonatal hypoxic–ischaemic cerebral injury. Journal of Physiology, 2018, 596, 6043-6062.	2.9	21
18	Dexmedetomidine Combined with Therapeutic Hypothermia Is Associated with Cardiovascular Instability and Neurotoxicity in a Piglet Model of Perinatal Asphyxia. Developmental Neuroscience, 2017, 39, 156-170.	2.0	23

Eridan Rocha-Ferreira

#	Article	IF	CITATIONS
19	Systemic pro-inflammatory cytokine status following therapeutic hypothermia in a piglet hypoxia-ischemia model. Journal of Neuroinflammation, 2017, 14, 44.	7.2	37
20	Immune responses in perinatal brain injury. Brain, Behavior, and Immunity, 2017, 63, 210-223.	4.1	39
21	γÎT cells but not αβT cells contribute to sepsis-induced white matter injury and motor abnormalities in mice. Journal of Neuroinflammation, 2017, 14, 255.	7.2	32
22	Surgery increases cell death and induces changes in gene expression compared with anesthesia alone in the developing piglet brain. PLoS ONE, 2017, 12, e0173413.	2.5	16
23	Placental, Matrilineal, and Epigenetic Mechanisms Promoting Environmentally Adaptive Development of the Mammalian Brain. Neural Plasticity, 2016, 2016, 1-8.	2.2	7
24	Immediate Remote Ischemic Postconditioning Reduces Brain Nitrotyrosine Formation in a Piglet Asphyxia Model. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-11.	4.0	31
25	Plasticity in the Neonatal Brain following Hypoxic-Ischaemic Injury. Neural Plasticity, 2016, 2016, 1-16.	2.2	137
26	Inhibition of Signal Transducer and Activator of Transcription 3 (<scp>STAT</scp> 3) reduces neonatal hypoxicâ€ischaemic brain damage. Journal of Neurochemistry, 2016, 136, 981-994.	3.9	58
27	Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiology of Disease, 2016, 87, 29-38.	4.4	52
28	Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1396-1411.	4.3	24
29	Isoflurane Exposure Induces Cell Death, Microglial Activation and Modifies the Expression of Genes Supporting Neurodevelopment and Cognitive Function in the Male Newborn Piglet Brain. PLoS ONE, 2016, 11, e0166784.	2.5	31
30	134. Generation of Light-Emitting Somatic-Transgenic Mice for Disease Modelling of Hypoxic Ischaemic Encephalopathy. Molecular Therapy, 2015, 23, S55.	8.2	0
31	The role of different strain backgrounds in bacterial endotoxin-mediated sensitization to neonatal hypoxic–ischemic brain damage. Neuroscience, 2015, 311, 292-307.	2.3	31
32	Antimicrobial Peptides and Complement in Neonatal Hypoxia-Ischemia Induced Brain Damage. Frontiers in Immunology, 2015, 6, 56.	4.8	56
33	Brain Cell Death Is Reduced With Cooling by 3.5°C to 5°C but Increased With Cooling by 8.5°C in a Piglet Asphyxia Model. Stroke, 2015, 46, 275-278.	2.0	82
34	Peptidylarginine deiminases: novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. Journal of Neurochemistry, 2014, 130, 555-562.	3.9	84
35	Kisspeptin Prevention of Amyloid-β Peptide Neurotoxicity <i>in Vitro</i> . ACS Chemical Neuroscience, 2012, 3, 706-719.	3.5	40
36	Neuronal câ€Jun is required for successful axonal regeneration, but the effects of phosphorylation of its Nâ€ŧerminus are moderate. Journal of Neurochemistry, 2012, 121, 607-618.	3.9	65