
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6865233/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological Linkages Between Aboveground and Belowground Biota. Science, 2004, 304, 1629-1633.	6.0	3,502
2	Going back to the roots: the microbial ecology of the rhizosphere. Nature Reviews Microbiology, 2013, 11, 789-799.	13.6	2,669
3	Belowground biodiversity and ecosystem functioning. Nature, 2014, 515, 505-511.	13.7	2,371
4	Landscape moderation of biodiversity patterns and processes ―eight hypotheses. Biological Reviews, 2012, 87, 661-685.	4.7	1,443
5	Plant–soil feedbacks: the past, the present and future challenges. Journal of Ecology, 2013, 101, 265-276.	1.9	1,259
6	The significance of soils and soil science towards realization of the United Nations Sustainable Development Goals. Soil, 2016, 2, 111-128.	2.2	1,077
7	Biodiversity increases the resistance of ecosystem productivity to climate extremes. Nature, 2015, 526, 574-577.	13.7	1,032
8	Intensive agriculture reduces soil biodiversity across Europe. Global Change Biology, 2015, 21, 973-985.	4.2	641
9	Soil nematode abundance and functional group composition at a global scale. Nature, 2019, 572, 194-198.	13.7	635
10	Interactions between Aboveground and Belowground Biodiversity in Terrestrial Ecosystems: Patterns, Mechanisms, and Feedbacks. BioScience, 2000, 50, 1049.	2.2	614
11	Species divergence and trait convergence in experimental plant community assembly. Ecology Letters, 2005, 8, 1283-1290.	3.0	605
12	Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 2025-2034.	1.8	604
13	Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature, 1993, 362, 53-56.	13.7	588
14	Soil networks become more connected and take up more carbon as nature restoration progresses. Nature Communications, 2017, 8, 14349.	5.8	555
15	Temporal variation in plant-soil feedback controls succession. Ecology Letters, 2006, 9, 1080-1088.	3.0	550
16	Soil food web properties explain ecosystem services across European land use systems. Proceedings of the United States of America, 2013, 110, 14296-14301.	3.3	520
17	Soil invertebrate fauna enhances grassland succession and diversity. Nature, 2003, 422, 711-713.	13.7	501
18	Linking above- and belowground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution, 2001, 16, 547-554.	4.2	482

#	Article	IF	CITATIONS
19	Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity. Soil Biology and Biochemistry, 2008, 40, 2297-2308.	4.2	457
20	MICROBE-MEDIATED PLANT–SOIL FEEDBACK CAUSES HISTORICAL CONTINGENCY EFFECTS IN PLANT COMMUNITY ASSEMBLY. Ecological Monographs, 2007, 77, 147-162.	2.4	427
21	Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytologist, 2016, 212, 838-855.	3.5	397
22	Terrestrial Ecosystem Responses to Species Gains and Losses. Science, 2011, 332, 1273-1277.	6.0	379
23	Where, when and how plant–soil feedback matters in a changing world. Functional Ecology, 2016, 30, 1109-1121.	1.7	378
24	Linking aboveground and belowground diversity. Trends in Ecology and Evolution, 2005, 20, 625-633.	4.2	359
25	Plant species identity and diversity effects on different trophic levels of nematodes in the soil food web. Oikos, 2004, 106, 576-586.	1.2	356
26	Plant–soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology, 2010, 98, 1063-1073.	1.9	339
27	The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 2011, 14, 1170-1181.	3.0	332
28	Soil inoculation steers restoration of terrestrial ecosystems. Nature Plants, 2016, 2, 16107.	4.7	329
29	Microbial ecology of biological invasions. ISME Journal, 2007, 1, 28-37.	4.4	323
30	Plant-soil biota interactions and spatial distribution of black cherry in its native and invasive ranges. Ecology Letters, 2003, 6, 1046-1050.	3.0	322
31	Ecological Intensification: Bridging the Gap between Science and Practice. Trends in Ecology and Evolution, 2019, 34, 154-166.	4.2	318
32	Impacts of soil microbial communities on exotic plant invasions. Trends in Ecology and Evolution, 2010, 25, 512-519.	4.2	315
33	Plant species and functional group effects on abiotic and microbial soil properties and plant-soil feedback responses in two grasslands. Journal of Ecology, 2006, 94, 893-904.	1.9	311
34	Global distribution of earthworm diversity. Science, 2019, 366, 480-485.	6.0	248
35	Climate change effects on plant-soil feedbacks and consequences for biodiversity and functioning of terrestrial ecosystems. Science Advances, 2019, 5, eaaz1834.	4.7	245
36	Successful range-expanding plants experience less above-ground and below-ground enemy impact. Nature, 2008, 456, 946-948.	13.7	238

#	Article	IF	CITATIONS
37	Plant species diversity as a driver of early succession in abandoned fields: a multi-site approach. Oecologia, 2000, 124, 91-99.	0.9	236
38	Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia, 2009, 161, 1-14.	0.9	223
39	Die-back of Phragmites australis in European wetlands: an overview of the European Research Programme on Reed Die-back and Progression (1993–1994). Aquatic Botany, 1997, 59, 263-275.	0.8	218
40	Accumulation of local pathogens: a new hypothesis to explain exotic plant invasions. Oikos, 2006, 114, 168-176.	1.2	218
41	PLANT DEFENSE BELOWGROUND AND SPATIOTEMPORAL PROCESSES IN NATURAL VEGETATION. Ecology, 2003, 84, 2269-2280.	1.5	216
42	Fungal biomass development in a chronosequence of land abandonment. Soil Biology and Biochemistry, 2006, 38, 51-60.	4.2	216
43	Plant–soil feedbacks: role of plant functional group and plant traits. Journal of Ecology, 2016, 104, 1608-1617.	1.9	213
44	Root herbivore effects on above-ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. Journal of Animal Ecology, 2005, 74, 1121-1130.	1.3	208
45	Plant species diversity, plant biomass and responses of the soil community on abandoned land across Europe: idiosyncracy or above-belowground time lags. Oikos, 2003, 103, 45-58.	1.2	204
46	Divergent composition but similar function of soil food webs of individual plants: plant species and community effects. Ecology, 2010, 91, 3027-3036.	1.5	204
47	HOW SOIL-BORNE PATHOGENS MAY AFFECT PLANT COMPETITION. Ecology, 1997, 78, 1785-1795.	1.5	203
48	Plant community development is affected by nutrients and soil biota. Journal of Ecology, 2004, 92, 824-834.	1.9	200
49	Soil community composition drives aboveground plant-herbivore-parasitoid interactions. Ecology Letters, 2005, 8, 652-661.	3.0	198
50	Relative importance of competition and plant–soil feedback, their synergy, context dependency and implications for coexistence. Ecology Letters, 2018, 21, 1268-1281.	3.0	197
51	Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. Journal of Ecology, 2011, 99, 945-953.	1.9	185
52	Climate Change, Aboveground-Belowground Interactions, and Species' Range Shifts. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 365-383.	3.8	182
53	Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. ISME Journal, 2017, 11, 2294-2304.	4.4	177
54	Reduction of rare soil microbes modifies plant–herbivore interactions. Ecology Letters, 2010, 13, 292-301.	3.0	176

#	Article	IF	CITATIONS
55	Consequences of plant–soil feedbacks in invasion. Journal of Ecology, 2013, 101, 298-308.	1.9	174
56	Differential responses of soil bacteria, fungi, archaea and protists to plant species richness and plant functional group identity. Molecular Ecology, 2017, 26, 4085-4098.	2.0	173
57	A test of the hierarchical model of litter decomposition. Nature Ecology and Evolution, 2017, 1, 1836-1845.	3.4	172
58	Mechanism of control of rootâ€feeding nematodes by mycorrhizal fungi in the dune grass Ammophila arenaria. New Phytologist, 2006, 169, 829-840.	3.5	166
59	Effects of Global Changes on Above- and Belowground Biodiversity in Terrestrial Ecosystems: Implications for Ecosystem Functioning. BioScience, 2000, 50, 1089.	2.2	165
60	Drought Legacy Effects on the Composition of Soil Fungal and Prokaryote Communities. Frontiers in Microbiology, 2018, 9, 294.	1.5	161
61	Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biology and Biochemistry, 2015, 90, 204-213.	4.2	159
62	Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos, 2007, 116, 367-376.	1.2	157
63	Crop yield gap and stability in organic and conventional farming systems. Agriculture, Ecosystems and Environment, 2018, 256, 123-130.	2.5	157
64	Trophic interactions in a changing world. Basic and Applied Ecology, 2004, 5, 487-494.	1.2	151
65	Plant invaders and their novel natural enemies: who is naÃ ⁻ ve?. Ecology Letters, 2009, 12, 107-117.	3.0	149
66	Interactions between aboveground and belowground induced responses against phytophages. Basic and Applied Ecology, 2003, 4, 63-77.	1.2	147
67	Detecting macroecological patterns in bacterial communities across independent studies of global soils. Nature Microbiology, 2018, 3, 189-196.	5.9	136
68	Challenges and Opportunities for Soil Biodiversity in the Anthropocene. Current Biology, 2019, 29, R1036-R1044.	1.8	136
69	Metabolomic analysis of the interaction between plants and herbivores. Metabolomics, 2009, 5, 150-161.	1.4	135
70	Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia, 2000, 125, 45-54.	0.9	133
71	Separating the chance effect from other diversity effects in the functioning of plant communities. Oikos, 2001, 92, 123-134.	1.2	132
72	Reduced plant–soil feedback of plant species expanding their range as compared to natives. Journal of Ecology, 2007, 95, 1050-1057.	1.9	131

#	Article	IF	CITATIONS
73	Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomologia Experimentalis Et Applicata, 2005, 115, 161-170.	0.7	129
74	Soil food web structure during ecosystem development after land abandonment. Applied Soil Ecology, 2008, 39, 23-34.	2.1	126
75	Legacy effects of aboveground–belowground interactions. Ecology Letters, 2012, 15, 813-821.	3.0	126
76	CLIMATE VS. SOIL FACTORS IN LOCAL ADAPTATION OF TWO COMMON PLANT SPECIES. Ecology, 2007, 88, 424-433.	1.5	125
77	Soil biotic legacy effects of extreme weather events influence plant invasiveness. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9835-9838.	3.3	125
78	Above- and Below-Ground Terpenoid Aldehyde Induction in Cotton, Gossypium herbaceum, Following Root and Leaf Injury. Journal of Chemical Ecology, 2004, 30, 53-67.	0.9	121
79	The plant perceptron connects environment to development. Nature, 2017, 543, 337-345.	13.7	120
80	Invasive plants and their escape from root herbivory: a worldwide comparison of the root-feeding nematode communities of the dune grass Ammophila arenaria in natural and introduced ranges. Biological Invasions, 2005, 7, 733-746.	1.2	118
81	Ecology and Evolution of Soil Nematode Chemotaxis. Journal of Chemical Ecology, 2012, 38, 615-628.	0.9	118
82	Phragmites die-back: bud and root death, blockages within the aeration and vascular systems and the possible role of phytotoxins. New Phytologist, 1996, 133, 399-414.	3.5	114
83	The long-term restoration of ecosystem complexity. Nature Ecology and Evolution, 2020, 4, 676-685.	3.4	114
84	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
85	Impact of foliar herbivory on the development of a root-feeding insect and its parasitoid. Oecologia, 2007, 152, 257-264.	0.9	112
86	Independent variations of plant and soil mixtures reveal soil feedback effects on plant community overyielding. Journal of Ecology, 2013, 101, 287-297.	1.9	111
87	Control of Plant Species Richness and Zonation of Functional Groups along a Freshwater Flooding Gradient. Oikos, 1999, 86, 523.	1.2	110
88	Linking above- and below-ground biodiversity: abundance and trophic complexity in soil as a response to experimental plant communities on abandoned arable land. Functional Ecology, 2001, 15, 506-514.	1.7	106
89	Virulence of soilâ€borne pathogens and invasion by <i>Prunus serotina</i> . New Phytologist, 2010, 186, 484-495.	3.5	104
90	Vertebrate herbivores influence soil nematodes by modifying plant communities. Ecology, 2010, 91, 828-835.	1.5	104

#	Article	IF	CITATIONS
91	Biotic soil factors affecting the growth and development of Ammophila arenaria. Oecologia, 1988, 76, 313-320.	0.9	103
92	Soil feedback and pathogen activity in Prunus serotina throughout its native range. Journal of Ecology, 2005, 93, 890-898.	1.9	103
93	Interactions between above- and belowground biota: importance for small-scale vegetation mosaics in a grassland ecosystem. Oikos, 2000, 90, 582-598.	1.2	99
94	Release from native root herbivores and biotic resistance by soil pathogens in a new habitat both affect the alien Ammophila arenaria in South Africa. Oecologia, 2004, 141, 502-510.	0.9	99
95	Interactions between invasive plants and insect herbivores: A plea for a multitrophic perspective. Biological Conservation, 2010, 143, 2251-2259.	1.9	98
96	INTERPLAY BETWEENSENECIO JACOBAEAAND PLANT, SOIL, AND ABOVEGROUND INSECT COMMUNITY COMPOSITION. Ecology, 2006, 87, 2002-2013.	1.5	97
97	Towards an integrative understanding of soil biodiversity. Biological Reviews, 2020, 95, 350-364.	4.7	97
98	Development of a negative plant-soil feedback in the expansion zone of the clonal grass Ammophila arenaria following root formation and nematode colonization. Journal of Ecology, 2002, 90, 978-988.	1.9	94
99	Modelling C and N mineralisation in soil food webs during secondary succession on ex-arable land. Soil Biology and Biochemistry, 2011, 43, 251-260.	4.2	94
100	Longâ€ŧerm effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on exâ€arable fields. Applied Vegetation Science, 2007, 10, 97-110.	0.9	93
101	SOIL FEEDBACK OF EXOTIC SAVANNA GRASS RELATES TO PATHOGEN ABSENCE AND MYCORRHIZAL SELECTIVITY. Ecology, 2007, 88, 978-988.	1.5	91
102	Root herbivore identity matters in plant-mediated interactions between root and shoot herbivores. Basic and Applied Ecology, 2007, 8, 491-499.	1.2	90
103	Root Herbivore Effects on Aboveground Multitrophic Interactions: Patterns, Processes and Mechanisms. Journal of Chemical Ecology, 2012, 38, 755-767.	0.9	90
104	Towards an Integration of Biodiversity–Ecosystem Functioning and Food Web Theory to Evaluate Relationships between Multiple Ecosystem Services. Advances in Ecological Research, 2015, , 161-199.	1.4	87
105	Successional trajectories of soil nematode and plant communities in a chronosequence of ex-arable lands. Biological Conservation, 2005, 126, 317-327.	1.9	86
106	Low abundant soil bacteria can be metabolically versatile and fast growing. Ecology, 2017, 98, 555-564.	1.5	83
107	Novel chemistry of invasive plants: exotic species have more unique metabolomic profiles than native congeners. Ecology and Evolution, 2014, 4, 2777-2786.	0.8	82
108	Diversity and stability in plant communities. Nature, 2007, 446, E6-E7.	13.7	81

#	Article	IF	CITATIONS
109	Soil inoculation method determines the strength of plant–soil interactions. Soil Biology and Biochemistry, 2012, 55, 1-6.	4.2	78
110	Integrating quantitative morphological and qualitative molecular methods to analyse soil nematode community responses to plant range expansion. Methods in Ecology and Evolution, 2018, 9, 1366-1378.	2.2	78
111	Plant–soil feedback induces shifts in biomass allocation in the invasive plant <i>Chromolaena odorata</i> . Journal of Ecology, 2009, 97, 1281-1290.	1.9	77
112	Above―and belowâ€ground herbivory effects on belowâ€ground plant–fungus interactions and plant–soil feedback responses. Journal of Ecology, 2013, 101, 325-333.	1.9	77
113	Seed and Root Endophytic Fungi in a Range Expanding and a Related Plant Species. Frontiers in Microbiology, 2017, 8, 1645.	1.5	77
114	Plant–soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology, 2010, 16, 380-385.	4.2	75
115	Physiological Integration of the Clonal Plant Carex arenaria and Its Response to Soil-Borne Pathogens. Oikos, 1998, 81, 229.	1.2	74
116	Microbial invasions in terrestrial ecosystems. Nature Reviews Microbiology, 2019, 17, 621-631.	13.6	74
117	Plant–Soil Feedbacks and Temporal Dynamics of Plant Diversity–Productivity Relationships. Trends in Ecology and Evolution, 2021, 36, 651-661.	4.2	74
118	Root traits and belowground herbivores relate to plant–soil feedback variation among congeners. Nature Communications, 2019, 10, 1564.	5.8	71
119	Redefining plant systems biology: from cell to ecosystem. Trends in Plant Science, 2011, 16, 183-190.	4.3	70
120	Plant–soil feedbacks of exotic plant species across life forms: a meta-analysis. Biological Invasions, 2014, 16, 2551-2561.	1.2	70
121	Combined effects of agrochemicals and ecosystem services on crop yield across Europe. Ecology Letters, 2017, 20, 1427-1436.	3.0	70
122	The importance of plant–soil interactions, soil nutrients, and plant life history traits for the temporal dynamics of Jacobaea vulgaris in a chronosequence of oldâ€fields. Oikos, 2012, 121, 1251-1262.	1.2	69
123	Analysis of nematodes and soil-borne fungi fromAmmophila arenaria (Marram grass) in Dutch coastal foredunes by multivariate techniques. European Journal of Plant Pathology, 1995, 101, 149-162.	0.8	67
124	Range-expansion effects on the belowground plant microbiome. Nature Ecology and Evolution, 2019, 3, 604-611.	3.4	67
125	Plant parasitic nematodes and spatio-temporal variation in natural vegetation. Applied Soil Ecology, 1998, 10, 253-262.	2.1	66
126	Infochemicals structure marine, terrestrial and freshwater food webs: Implications for ecological informatics, 2006, 1, 23-32.	2.3	66

WIM H. VAN DER PUTTEN

#	Article	IF	CITATIONS
127	Urban and agricultural soils: conflicts and trade-offs in the optimization of ecosystem services. Urban Ecosystems, 2014, 17, 239-253.	1.1	66
128	Barbarea vulgaris Glucosinolate Phenotypes Differentially Affect Performance and Preference of Two Different Species of Lepidopteran Herbivores. Journal of Chemical Ecology, 2008, 34, 121-131.	0.9	65
129	Effects of sediment type and water level on biomass production of wetland plant species. Aquatic Botany, 1999, 64, 151-165.	0.8	64
130	Ecological fits, mis-fits and lotteries involving insect herbivores on the invasive plant, Bunias orientalis. Biological Invasions, 2010, 12, 3045-3059.	1.2	64
131	Are there evolutionary consequences of plant–soil feedbacks along soil gradients?. Functional Ecology, 2014, 28, 55-64.	1.7	64
132	Earthworms counterbalance the negative effect of microorganisms on plant diversity and enhance the tolerance of grasses to nematodes. Oikos, 2008, 117, 711-718.	1.2	63
133	Plants Know Where It Hurts: Root and Shoot Jasmonic Acid Induction Elicit Differential Responses in Brassica oleracea. PLoS ONE, 2013, 8, e65502.	1.1	63
134	Effects of changes in plant species richness and community traits on carabid assemblages and feeding guilds. Agriculture, Ecosystems and Environment, 2008, 127, 100-106.	2.5	62
135	A multitrophic perspective on functioning and evolution of facilitation in plant communities. Journal of Ecology, 2009, 97, 1131-1138.	1.9	62
136	Spatial heterogeneity of plant–soil feedback affects root interactions and interspecific competition. New Phytologist, 2015, 207, 830-840.	3.5	62
137	Pollination contribution to crop yield is often context-dependent: A review of experimental evidence. Agriculture, Ecosystems and Environment, 2019, 280, 16-23.	2.5	62
138	Restoration of species-rich grasslands on ex-arable land: Seed addition outweighs soil fertility reduction. Biological Conservation, 2008, 141, 2208-2217.	1.9	61
139	Belowground drivers of plant diversity. Science, 2017, 355, 134-135.	6.0	61
140	Chemical defense, mycorrhizal colonization and growth responses in Plantago lanceolata L Oecologia, 2009, 160, 433-442.	0.9	60
141	Network Analyses Can Advance Above-Belowground Ecology. Trends in Plant Science, 2018, 23, 759-768.	4.3	60
142	Single introductions of soil biota and plants generate longâ€ŧerm legacies in soil and plant community assembly. Ecology Letters, 2019, 22, 1145-1151.	3.0	59
143	Plant responses to simultaneous stress of waterlogging and shade: amplified or hierarchical effects?. New Phytologist, 2003, 157, 281-290.	3.5	58
144	Intraspecific Variation in Plant Defense Alters Effects of Root Herbivores on Leaf Chemistry and Aboveground Herbivore Damage. Journal of Chemical Ecology, 2008, 34, 1360-1367.	0.9	58

WIM H. VAN DER PUTTEN

#	Article	IF	CITATIONS
145	Community patterns of soil bacteria and nematodes in relation to geographic distance. Soil Biology and Biochemistry, 2012, 45, 1-7.	4.2	56
146	Context dependency and saturating effects of loss of rare soil microbes on plant productivity. Frontiers in Plant Science, 2015, 6, 485.	1.7	56
147	Nematode Interactions in Nature: Models for Sustainable Control of Nematode Pests of Crop Plants?. Advances in Agronomy, 2006, 89, 227-260.	2.4	54
148	Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils. Environmental Microbiology, 2010, 12, 2096-2106.	1.8	54
149	Rapid evolution of phenology during range expansion with recent climate change. Global Change Biology, 2018, 24, e534-e544.	4.2	54
150	Microorganisms and nematodes increase levels of secondary metabolites in roots and root exudates of Plantago lanceolata. Plant and Soil, 2010, 329, 117-126.	1.8	53
151	Nitrogen Addition and Warming Independently Influence the Belowground Micro-Food Web in a Temperate Steppe. PLoS ONE, 2013, 8, e60441.	1.1	53
152	Characterization of soil organisms involved in the degeneration of Ammophila arenaria. Soil Biology and Biochemistry, 1990, 22, 845-852.	4.2	52
153	Soil Organism and Plant Introductions in Restoration of Speciesâ€Rich Grassland Communities. Restoration Ecology, 2009, 17, 258-269.	1.4	52
154	Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity. Ecosphere, 2017, 8, e01719.	1.0	52
155	Enhancement of Late Successional Plants on Ex-Arable Land by Soil Inoculations. PLoS ONE, 2011, 6, e21943.	1.1	52
156	Effects of litter on substrate conditions and growth of emergent macrophytes. New Phytologist, 1997, 135, 527-537.	3.5	51
157	The epigenetic footprint of poleward rangeâ€expanding plants in apomictic dandelions. Molecular Ecology, 2015, 24, 4406-4418.	2.0	49
158	Plant-feeding nematodes in coastal sand dunes: occurrence, host specificity and effects on plant growth. Plant and Soil, 2015, 397, 17-30.	1.8	49
159	Climate change and invasion by intracontinental range-expanding exotic plants: the role of biotic interactions. Annals of Botany, 2010, 105, 843-848.	1.4	48
160	Plant–soil feedback of native and range-expanding plant species is insensitive to temperature. Oecologia, 2010, 162, 1059-1069.	0.9	47
161	Grazingâ€induced changes in plant–soil feedback alter plant biomass allocation. Oikos, 2014, 123, 800-806.	1.2	47
162	Effects of root decomposition on plant–soil feedback of early―and midâ€successional plant species. New Phytologist, 2016, 212, 220-231.	3.5	47

#	Article	IF	CITATIONS
163	Enhancing Soil Organic Matter as a Route to the Ecological Intensification of European Arable Systems. Ecosystems, 2018, 21, 1404-1415.	1.6	47
164	Relationships between fungal community composition in decomposing leaf litter and homeâ€field advantage effects. Functional Ecology, 2019, 33, 1524-1535.	1.7	47
165	Microbial storage and its implications for soil ecology. ISME Journal, 2022, 16, 617-629.	4.4	47
166	Interactions between spatially separated herbivores indirectly alter plant diversity. Ecology Letters, 2004, 8, 30-37.	3.0	46
167	Size-dependent loss of aboveground animals differentially affects grassland ecosystem coupling and functions. Nature Communications, 2018, 9, 3684.	5.8	46
168	Spatial distribution of soil nematodes relates to soil organic matter and life strategy. Soil Biology and Biochemistry, 2019, 136, 107542.	4.2	46
169	A global database of soil nematode abundance and functional group composition. Scientific Data, 2020, 7, 103.	2.4	46
170	Harmful soil organisms in coastal foredunes involved in degeneration of Ammophila arenaria and Calammophila baltica. Canadian Journal of Botany, 1990, 68, 1560-1568.	1.2	45
171	Influence of presence and spatial arrangement of belowground insects on hostâ€plant selection of aboveground insects: a field study. Ecological Entomology, 2009, 34, 339-345.	1.1	45
172	Variation in homeâ€field advantage and ability in leaf litter decomposition across successional gradients. Functional Ecology, 2018, 32, 1563-1574.	1.7	45
173	Latitudinal variation in soil nematode communities under climate warmingâ€related rangeâ€expanding and native plants. Global Change Biology, 2019, 25, 2714-2726.	4.2	45
174	Removal of soil biota alters soil feedback effects on plant growth and defense chemistry. New Phytologist, 2019, 221, 1478-1491.	3.5	45
175	Plant-soil feedback as a selective force. Trends in Ecology and Evolution, 1997, 12, 169-170.	4.2	44
176	Consequences of variation in species diversity in a community of root-feeding herbivores for nematode dynamics and host plant biomass. Oikos, 2005, 110, 417-427.	1.2	44
177	Contrasting diversity patterns of soil mites and nematodes in secondary succession. Acta Oecologica, 2009, 35, 603-609.	0.5	44
178	Organic farming practices result in compositional shifts in nematode communities that exceed crop-related changes. Applied Soil Ecology, 2016, 98, 254-260.	2.1	44
179	Reciprocal Effects of Litter from Exotic and Congeneric Native Plant Species via Soil Nutrients. PLoS ONE, 2012, 7, e31596.	1.1	44
180	Effects of the Timing of Herbivory on Plant Defense Induction and Insect Performance in Ribwort Plantain (Plantago lanceolata L.) Depend on Plant Mycorrhizal Status. Journal of Chemical Ecology, 2015, 41, 1006-1017.	0.9	42

11

#	Article	IF	CITATIONS
181	Unexpected role of canonical aerobic methanotrophs in upland agricultural soils. Soil Biology and Biochemistry, 2019, 131, 1-8.	4.2	42

182 Intra-specific Differences in Root and Shoot Glucosinolate Profiles among White Cabbage (Brassica) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5 $\frac{1}{2.4}$

183	The role of nematodes in ecosystems , 2009, , 1-44.		40
184	Soil microbial community structure of rangeâ€expanding plant species differs from coâ€occurring natives. Journal of Ecology, 2013, 101, 1093-1102.	1.9	39
185	Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bioâ€based residue application. Global Change Biology, 2015, 21, 3864-3879.	4.2	39
186	Effects of first―and secondâ€generation bioenergy crops on soil processes and legacy effects on a subsequent crop. GCB Bioenergy, 2016, 8, 136-147.	2.5	39
187	Root responses of grassland species to spatial heterogeneity of plant–soil feedback. Functional Ecology, 2015, 29, 177-186.	1.7	38
188	Aboveground vertebrate and invertebrate herbivore impact on net N mineralization in subalpine grasslands. Ecology, 2015, 96, 3312-3322.	1.5	38
189	Colonization of the root zone ofAmmophila arenaria by harmful soil organisms. Plant and Soil, 1989, 120, 213-223.	1.8	37
190	Above―and belowground insect herbivores differentially affect soil nematode communities in speciesâ€rich plant communities. Oikos, 2007, 116, 923-930.	1.2	37
191	Long-term effectiveness of sowing high and low diversity seed mixtures to enhance plant community development on ex-arable fields. Applied Vegetation Science, 2007, 10, 97.	0.9	36
192	Soil microorganisms control plant ectoparasitic nematodes in natural coastal foredunes. Oecologia, 2007, 152, 505-514.	0.9	36
193	Behaviour of male and female parasitoids in the field: influence of patch size, host density, and habitat complexity. Ecological Entomology, 2010, 35, 341-351.	1.1	36
194	Nonlinear responses of soil nematode community composition to increasing aridity. Global Ecology and Biogeography, 2020, 29, 117-126.	2.7	36
195	Effects of bioâ€based residue amendments on greenhouse gas emission from agricultural soil are stronger than effects of soil type with different microbial community composition. GCB Bioenergy, 2017, 9, 1707-1720.	2.5	35
196	Cultivation-success of rare soil bacteria is not influenced by incubation time and growth medium. PLoS ONE, 2019, 14, e0210073.	1.1	35
197	Effect of vegetation manipulation of abandoned arable land on soil microbial properties. Biology and Fertility of Soils, 2000, 31, 121-127.	2.3	34
198	Soil and Freshwater and Marine Sediment Food Webs: Their Structure and Function. BioScience, 2013, 63, 35-42.	2.2	34

#	Article	IF	CITATIONS
199	Comparison of nutrient acquisition in exotic plant species and congeneric natives. Journal of Ecology, 2011, 99, 1308-1315.	1.9	33
200	Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change. Ecology, 2015, 96, 1298-1308.	1.5	33
201	Effects of sand deposition on the interaction between Ammophila arenaria, plant-parasitic nematodes, and pathogenic fungi. Canadian Journal of Botany, 1995, 73, 1141-1150.	1.2	32
202	Rapid identification of cyst (Heterodera spp., Globodera spp.) and root-knot (Meloidogyne spp.) nematodes on the basis of ITS2 sequence variation detected by PCR-single-strand conformational polymorphism (PCR-SSCP) in cultures and field samples. Molecular Ecology, 2000, 9, 1223-1232.	2.0	32
203	Sequential effects of root and foliar herbivory on aboveground and belowground induced plant defense responses and insect performance. Oecologia, 2014, 175, 187-198.	0.9	32
204	Complementarity and selection effects in early and midâ€successional plant communities are differentially affected by plant–soil feedback. Journal of Ecology, 2015, 103, 641-647.	1.9	32
205	Can the negative plant–soil feedback of Jacobaea vulgaris be explained by autotoxicity?. Basic and Applied Ecology, 2012, 13, 533-541.	1.2	31
206	Soil handling methods should be selected based on research questions and goals. New Phytologist, 2017, 216, 18-23.	3.5	31
207	Factors relating to regional and local success of exotic plant species in their new range. Diversity and Distributions, 2011, 17, 542-551.	1.9	30
208	Can aboveâ€ground ecosystem services compensate for reduced fertilizer input and soil organic matter in annual crops?. Journal of Applied Ecology, 2016, 53, 1186-1194.	1.9	30
209	Vegetative reproduction by species with different adaptations to shallow-flooded habitats. New Phytologist, 2000, 145, 61-70.	3.5	29
210	Endoparasitic nematodes reduce multiplication of ectoparasitic nematodes, but do not prevent growth reduction of Ammophila arenaria (L.) Link (marram grass). Applied Soil Ecology, 2004, 27, 65-75.	2.1	29
211	The importance of aboveground–belowground interactions on the evolution and maintenance of variation in plant defense traits. Frontiers in Plant Science, 2013, 4, 431.	1.7	29
212	Competition Increases Sensitivity of Wheat (Triticum aestivum) to Biotic Plant-Soil Feedback. PLoS ONE, 2013, 8, e66085.	1.1	29
213	Legacy effects of elevated ozone on soil biota and plant growth. Soil Biology and Biochemistry, 2015, 91, 50-57.	4.2	29
214	Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data, 2021, 8, 136.	2.4	29
215	Comparing arbuscular mycorrhizal communities of individual plants in a grassland biodiversity experiment. New Phytologist, 2010, 186, 746-754.	3.5	28
216	Soil fauna diversity increases CO ₂ but suppresses N ₂ O emissions from soil. Global Change Biology, 2020, 26, 1886-1898.	4.2	28

#	Article	IF	CITATIONS
217	Quantitative comparison between the rhizosphere effect of <i>Arabidopsis thaliana</i> and co-occurring plant species with a longer life history. ISME Journal, 2020, 14, 2433-2448.	4.4	27
218	Population dynamics of a host-specific root-feeding cyst nematode and resource quantity in the root zone of a clonal grass. Oikos, 2006, 112, 651-659.	1.2	26
219	Can root-feeders alter the composition of AMF communities? Experimental evidence from the dune grass Ammophila arenaria. Basic and Applied Ecology, 2009, 10, 131-140.	1.2	26
220	Effects of native and exotic rangeâ€expanding plant species on taxonomic and functional composition of nematodes in the soil food web. Oikos, 2012, 121, 181-190.	1.2	26
221	Ecosystem coupling: A unifying framework to understand the functioning and recovery of ecosystems. One Earth, 2021, 4, 951-966.	3.6	26
222	Possibilities for management of coastal foredunes with deteriorated stands ofAmmophila arenaria (marram grass). Journal of Coastal Conservation, 1995, 1, 29-39.	0.7	25
223	Multiple species-specific controls of root-feeding nematodes in natural soils. Soil Biology and Biochemistry, 2008, 40, 2729-2735.	4.2	25
224	Pathogen-driven forest diversity. Nature, 2000, 404, 232-233.	13.7	24
225	Title is missing!. Plant Ecology, 2000, 147, 137-146.	0.7	24
226	Interactions between root-feeding nematodes depend on plant species identity. Soil Biology and Biochemistry, 2008, 40, 2186-2193.	4.2	24
227	Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction. Entomologia Experimentalis Et Applicata, 2011, 139, 197-206.	0.7	24
228	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	0.9	24
229	Toward a global platform for linking soil biodiversity data. Frontiers in Ecology and Evolution, 0, 3, .	1.1	24
230	Interspecific competition of early successional plant species in ex-arable fields as influenced by plant–soil feedback. Basic and Applied Ecology, 2015, 16, 112-119.	1.2	24
231	Biodiversityâ€ecosystem functioning relationships in a longâ€ŧerm nonâ€weeded field experiment. Ecology, 2018, 99, 1836-1846.	1.5	24
232	Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes. Journal of Coastal Conservation, 1997, 3, 133-142.	0.7	23
233	Vertical migration of nematodes and soil-borne fungi to developing roots of Ammophila arenaria (L.) link after sand accretion. Applied Soil Ecology, 1998, 10, 1-10.	2.1	23
234	Soil microorganisms in coastal foredunes control the ectoparasitic rootâ€feeding nematode <i>Tylenchorhynchus ventralis</i> by local interactions. Functional Ecology, 2009, 23, 621-626.	1.7	23

#	Article	IF	CITATIONS
235	Chemical variation in Jacobaea vulgaris is influenced by the interaction of season and vegetation successional stage. Phytochemistry, 2014, 99, 86-94.	1.4	23
236	LAESI mass spectrometry imaging as a tool to differentiate the root metabolome of native and range-expanding plant species. Planta, 2018, 248, 1515-1523.	1.6	23
237	Competition and predation as possible causes of bacterial rarity. Environmental Microbiology, 2019, 21, 1356-1368.	1.8	23
238	How to be invasive. Nature, 2002, 417, 32-33.	13.7	22
239	Soil feedback effects to the foredune grass Ammophila arenaria by endoparasitic root-feeding nematodes and whole soil communities. Soil Biology and Biochemistry, 2005, 37, 2077-2087.	4.2	22
240	Competition between endoparasitic nematodes and effect on biomass of Ammophila arenaria (marram) Tj ETQq(0.0 rgBT	Overlock 10
	Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms		

241	Effects of intraspecific variation in white cabbage (Brassica oleracea var. capitata) on soil organisms. Plant and Soil, 2010, 336, 509-518.	1.8	22
242	Additive effects of aboveground polyphagous herbivores and soil feedback in native and range-expanding exotic plants. Ecology, 2011, 92, 1344-1352.	1.5	22
243	How genetic modification of roots affects rhizosphere processes and plant performance. Journal of Experimental Botany, 2012, 63, 3475-3483.	2.4	21
244	Plant mutualisms with rhizosphere microbiota in introduced versus native ranges. Journal of Ecology, 2016, 104, 1259-1270.	1.9	21
245	Belowground Plant–Herbivore Interactions Vary among Climate-Driven Range-Expanding Plant Species with Different Degrees of Novel Chemistry. Frontiers in Plant Science, 2017, 8, 1861.	1.7	21
246	Does topsoil removal in grassland restoration benefit both soil nematode and plant communities?. Journal of Applied Ecology, 2019, 56, 1782-1793.	1.9	21
247	The power of simulating experiments. Ecological Modelling, 2009, 220, 2594-2597.	1.2	20
248	Effects of diversity and identity of the neighbouring plant community on the abundance of arthropods on individual ragwort (<i>Jacobaea vulgaris</i>) plants. Entomologia Experimentalis Et Applicata, 2012, 144, 27-36.	0.7	20
249	Selective alteration of soil food web components by invasive giant goldenrod <i>Solidago gigantea</i> in two distinct habitat types. Oikos, 2014, 123, 837-845.	1.2	20
250	Top-down control of root-feeding nematodes in range-expanding and congeneric native plant species. Basic and Applied Ecology, 2015, 16, 260-268.	1.2	20
251	Applying the Aboveground-Belowground Interaction Concept in Agriculture: Spatio-Temporal Scales Matter. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	20
252	Plant defence against nematodes is not mediated by changes in the soil microbial community. Functional Ecology, 2009, 23, 488-495.	1.7	19

#	Article	IF	CITATIONS
253	Effects of plant–soil feedback on tree seedling growth under arid conditions. Journal of Plant Ecology, 2011, 4, 193-200.	1.2	19
254	Hyperspectral reflectance of leaves and flowers of an outbreak species discriminates season and successional stage of vegetation. International Journal of Applied Earth Observation and Geoinformation, 2013, 24, 32-41.	1.4	19
255	Phylogenetic signals and predictability in plant–soil feedbacks. New Phytologist, 2020, 228, 1440-1449.	3.5	19
256	Globally, plantâ€soil feedbacks are weak predictors of plant abundance. Ecology and Evolution, 2021, 11, 1756-1768.	0.8	19
257	Effects of sand movement by wind on nematodes and soil-borne fungi in coastal foredunes. Journal of Coastal Conservation, 1997, 3, 133-142.	0.7	18
258	Biotic responses to climate extremes in terrestrial ecosystems. IScience, 2022, 25, 104559.	1.9	18
259	Vegetation development in coastal foredunes in relation to methods of establishing marram grass (Ammophila arenaria). Journal of Coastal Conservation, 1997, 3, 179-190.	0.7	17
260	Increased transgenerational epigenetic variation, but not predictable epigenetic variants, after environmental exposure in two apomictic dandelion lineages. Ecology and Evolution, 2018, 8, 3047-3059.	0.8	17
261	The influence of residence time and geographic extent on the strength of plant–soil feedbacks for naturalised <i>Trifolium</i> . Journal of Ecology, 2018, 106, 207-217.	1.9	17
262	Evaluating longâ€ŧerm success in grassland restoration: an ecosystem multifunctionality approach. Ecological Applications, 2021, 31, e02271.	1.8	17
263	Herbivory and Stoichiometric Feedbacks to Primary Production. PLoS ONE, 2015, 10, e0129775.	1.1	16
264	The Potential of Hyperspectral Patterns of Winter Wheat to Detect Changes in Soil Microbial Community Composition. Frontiers in Plant Science, 2016, 7, 759.	1.7	16
265	<i>Trifolium</i> species associate with a similar richness of soilâ€borne mutualists in their introduced and native ranges. Journal of Biogeography, 2016, 43, 944-954.	1.4	16
266	Herbivory and dominance shifts among exotic and congeneric native plant species during plant community establishment. Oecologia, 2016, 180, 507-517.	0.9	16
267	Rhizosphere and litter feedbacks to rangeâ€expanding plant species and related natives. Journal of Ecology, 2020, 108, 353-365.	1.9	16
268	Contrasting patterns of herbivore and predator pressure on invasive and native plants. Basic and Applied Ecology, 2012, 13, 725-734.	1.2	15
269	Effects of temperature, moisture and soil type on seedling emergence and mortality of riparian plant species. Aquatic Botany, 2017, 136, 82-94.	0.8	15
270	Pathogens and Plant Life Histories. , 1999, , 275-301.		15

WIM H. VAN DER PUTTEN

#	Article	IF	CITATIONS
271	Above―and Belowground Trophic Interactions on Creeping Thistle (Cirsium arvense) in High―and Lowâ€Diversity Plant Communities: Potential for Biotic Resistance?. Plant Biology, 2004, 6, 231-238.	1.8	14
272	Genetic Diversity and Differentiation of Ammophila arenaria (L.) Link as Revealed by ISSR Markers. Journal of Coastal Research, 2008, 241, 122-126.	0.1	14
273	Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community. PLoS ONE, 2012, 7, e49034.	1.1	14
274	Changes in plant defense chemistry (pyrrolizidine alkaloids) revealed through high-resolution spectroscopy. ISPRS Journal of Photogrammetry and Remote Sensing, 2013, 80, 51-60.	4.9	14
275	Local dominance of exotic plants declines with residence time: a role for plant–soil feedback?. AoB PLANTS, 2015, 7, .	1.2	14
276	Communityâ€level interactions between plants and soil biota during range expansion. Journal of Ecology, 2020, 108, 1860-1873.	1.9	14
277	Steering the soil microbiome by repeated litter addition. Journal of Ecology, 2021, 109, 2499-2513.	1.9	14
278	Quantifying the impact of above―and belowground higher trophic levels on plant and herbivore performance by modeling ¹ . Oikos, 2009, 118, 981-990.	1.2	13
279	Soil biotic impact on plant species shoot chemistry and hyperspectral reflectance patterns. New Phytologist, 2012, 196, 1133-1144.	3.5	13
280	Relatedness with plant species in native community influences ecological consequences of range expansions. Oikos, 2018, 127, 981-990.	1.2	13
281	Soil functional responses to drought under rangeâ€expanding and native plant communities. Functional Ecology, 2019, 33, 2402-2416.	1.7	13
282	Resilience of rhizosphere microbial predators and their prey communities after an extreme heat event. Functional Ecology, 2021, 35, 216-225.	1.7	13
283	Plant ectoparasitic nematodes prefer roots without their microbial enemies. Plant and Soil, 2009, 316, 277-284.	1.8	12
284	Plant responses to variable timing of aboveground clipping and belowground herbivory depend on plant age. Journal of Plant Ecology, 2018, 11, 696-708.	1.2	12
285	Drought and soil fertility modify fertilization effects on aphid performance in wheat. Basic and Applied Ecology, 2018, 30, 23-31.	1.2	12
286	Greenhouse gas (CO2, CH4, and N2O) emissions after abandonment of agriculture. Biology and Fertility of Soils, 2022, 58, 579-591.	2.3	12
287	The role of ethylene and darkness in accelerated shoot elongation of Ammophila breviligulata upon sand burial. Oecologia, 1998, 115, 359-365.	0.9	11
288	Do competition and selective herbivory cause replacement of Phragmites australis by tall forbs?. Aquatic Botany, 2004, 78, 217-232.	0.8	11

#	Article	IF	CITATIONS
289	Fungal root endophytes influence plants in a speciesâ€ s pecific manner that depends on plant's growth stage. Journal of Ecology, 2021, 109, 1618-1632.	1.9	11
290	Optimizing stand density for climate-smart forestry: A way forward towards resilient forests with enhanced carbon storage under extreme climate events. Soil Biology and Biochemistry, 2021, 162, 108396.	4.2	11
291	Soil microbial diversity and community composition during conversion from conventional to organic agriculture. Molecular Ecology, 2022, 31, 4017-4030.	2.0	11
292	Knowledge needs, available practices, and future challenges in agricultural soils. Soil, 2016, 2, 511-521.	2.2	10
293	Interspecific differences in nematode control between range-expanding plant species and their congeneric natives. Soil Biology and Biochemistry, 2016, 100, 233-241.	4.2	10
294	Plant-soil feedback as a driver of spatial structure in ecosystems. Physics of Life Reviews, 2022, 40, 6-14.	1.5	10
295	Responses of root-feeding nematodes (Helicotylenchus spp.) to local and non-local populations of the host plant Ammophila arenaria. Applied Soil Ecology, 2008, 39, 245-253.	2.1	9
296	Matgrass sward plant species benefit from soil organisms. Applied Soil Ecology, 2012, 62, 61-70.	2.1	9
297	No difference in the competitive ability of introduced and nativeTrifoliumprovenances when grown with soil biota from their introduced and native ranges. AoB PLANTS, 2016, 8, plw016.	1.2	9
298	Aboveground mammal and invertebrate exclusions cause consistent changes in soil food webs of two subalpine grassland types, but mechanisms are systemâ€specific. Oikos, 2017, 126, .	1.2	9
299	Soil microbial species loss affects plant biomass and survival of an introduced bacterial strain, but not inducible plant defences. Annals of Botany, 2018, 121, 311-319.	1.4	9
300	Effects of bioavailable phosphorus and soil biota on typical Nardus grassland species in competition with fast-growing plant species. Ecological Indicators, 2021, 120, 106880.	2.6	9
301	Effects of detritus accumulation on the growth of Scirpus maritimus under greenhouse conditions. Canadian Journal of Botany, 1995, 73, 852-861.	1.2	8
302	Plant–soil feedback and soil biodiversity affect the composition of plant communities. , 2005, , 250-272.		8
303	Introduced tree species released from negative soil biota. New Phytologist, 2014, 202, 341-343.	3.5	8
304	Timing of simulated aboveground herbivory influences population dynamics of root-feeding nematodes. Plant and Soil, 2017, 415, 215-228.	1.8	8
305	Long-term effects ofÂsowing high orÂlow diverse seed mixtures onÂplant andÂgastropod diversity. Acta Oecologica, 2006, 30, 173-181.	0.5	7
306	Pathogenicity and host range of Heterodera arenaria in coastal foredunes. Nematology, 2006, 8, 255-263.	0.2	7

#	Article	IF	CITATIONS
307	Local variation in belowground multitrophic interactions. Soil Biology and Biochemistry, 2009, 41, 1689-1695.	4.2	7
308	Testing the Australian Weed Risk Assessment with different estimates for invasiveness. Biological Invasions, 2013, 15, 1319-1330.	1.2	7
309	The northward shifting neophyte <i>Tragopogon dubius</i> is just as effective in forming mycorrhizal associations as the native <i>T. pratensis</i> . Plant Ecology and Diversity, 2014, 7, 533-539.	1.0	7
310	Short-term temperature history affects mineralization of fresh litter and extant soil organic matter, irrespective of agricultural management. Soil Biology and Biochemistry, 2020, 150, 107985.	4.2	7
311	Within-patch and edge microclimates vary over a growing season and are amplified during a heatwave: Consequences for ectothermic insects. Journal of Thermal Biology, 2021, 99, 103006.	1.1	7
312	Vegetation development in coastal foredunes in relation to methods of establishing marram grass (Ammophila arenaria). Journal of Coastal Conservation, 1997, 3, 179-190.	0.7	6
313	Changing soil legacies to direct restoration of plant communities. AoB PLANTS, 2017, 9, plx038.	1.2	6
314	Nematode community responses to rangeâ€expanding and native plant communities in original and new range soils. Ecology and Evolution, 2018, 8, 10288-10297.	0.8	6
315	Dispersal strategy of cyst nematodes (Heterodera arenaria) in the plant root zone of mobile dunes and consequences for emergence, survival and reproductive success. Applied Soil Ecology, 2006, 34, 176-183.	2.1	5
316	Variation in Specificity of Soil-Borne Pathogens from a Plant's Native Range versus Its Nonnative Range. International Journal of Ecology, 2011, 2011, 1-6.	0.3	5
317	Soil pathogen-aphid interactions under differences in soil organic matter and mineral fertilizer. PLoS ONE, 2017, 12, e0179695.	1.1	5
318	Influence of seed size on performance of non-native annual plant species in a novel community at two planting densities. Acta Oecologica, 2018, 92, 131-137.	0.5	5
319	Belowground Consequences of Intracontinental Range-Expanding Plants and Related Natives in Novel Environments. Frontiers in Microbiology, 2019, 10, 505.	1.5	5
320	Soil predator loss alters aboveground stoichiometry in a native but not in a related range-expanding plant when exposed to periodic heat waves. Soil Biology and Biochemistry, 2020, 150, 107999.	4.2	5
321	Distinct Biogeographic Phenomena Require a Specific Terminology: A Reply to Wilson and Sagoff. BioScience, 2020, 70, 112-114.	2.2	5
322	Temporal dynamics of range expander and congeneric native plant responses during and after extreme drought events. Ecological Monographs, 2022, 92, .	2.4	5
323	<scp>OSiD</scp> : opening the conceptual design of biobased processes to a contextâ€sensitive sustainability analysis. Biofuels, Bioproducts and Biorefining, 2021, 15, 961-972.	1.9	4
324	Effects of Light Quality on Colonization of Tomato Roots by AMF and Implications for Growth and Defense. Plants, 2022, 11, 861.	1.6	4

#	Article	IF	CITATIONS
325	Longâ€ŧerm recovery of above―and belowâ€ground interactions in restored grasslands after topsoil removal and seed addition. Journal of Applied Ecology, 2022, 59, 2299-2308.	1.9	4
326	No Paradox for Invasive Plants. Science, 2009, 325, 814-814.	6.0	3
327	Microbial Ecology and Nematode Control in Natural Ecosystems. , 2011, , 39-64.		3
328	Idiosyncrasy in ecology – what's in a word?. Frontiers in Ecology and the Environment, 2011, 9, 431-433.	1.9	3
329	Disentangling nematode and arbuscular mycorrhizal fungal community effect on the growth of range-expanding Centaurea stoebe in original and new range soil. Plant and Soil, 2021, 466, 207-221.	1.8	3
330	Severance of arbuscular mycorrhizal fungal mycelial networks in restoration grasslands enhances seedling biomass. New Phytologist, 2021, 232, 753-761.	3.5	3
331	Divergent composition but similar function of soil food webs beneath individual plants: plant species and community effects. Ecology, 2010, 91, 100319061621033.	1.5	3
332	Plant population and soil origin effects on rhizosphere nematode community composition of a range-expanding plant species and a native congener. Oecologia, 2020, 194, 237-250.	0.9	2
333	All mycorrhizas are not equal. Trends in Ecology and Evolution, 2001, 16, 672-673.	4.2	1
334	Soil and Society. Trends in Ecology and Evolution, 2016, 31, 661-662.	4.2	1
335	Soil Biodiversity and Ecosystem Functioning. , 2017, , 119-140.		1
336	Ecosystem Rates of Transformation Matter—Response. Science, 2011, 333, 937-937.	6.0	0
337	Reply to comment by Van de Ven et al. on our paper "Crop yield gap and stability in conventional and organic systems― Agriculture, Ecosystems and Environment, 2018, 267, 83-86.	2.5	Ο