List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686481/publications.pdf Version: 2024-02-01

ΔΝΙΠ ΚΠΜΑΦ

#	Article	IF	CITATIONS
1	Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydrate Polymers, 2018, 180, 128-144.	10.2	352
2	PVA-based hydrogels for tissue engineering: A review. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 159-182.	3.4	316
3	Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis from Sugarcane Bagasse as Agro-Waste. Journal of Materials Physics and Chemistry, 2020, 2, 1-8.	8.6	270
4	Development of sustainable bio-adhesives for engineered wood panels – A Review. RSC Advances, 2017, 7, 38604-38630.	3.6	259
5	Performance parameters of Savonius type hydrokinetic turbine – A Review. Renewable and Sustainable Energy Reviews, 2016, 64, 289-310.	16.4	150
6	Effect of crosslinking functionality on microstructure, mechanical properties, and in vitro cytocompatibility of cellulose nanocrystals reinforced poly (vinyl alcohol)/sodium alginate hybrid scaffolds. International Journal of Biological Macromolecules, 2017, 95, 962-973.	7.5	149
7	Microstructural and mechanical properties of porous biocomposite scaffolds based on polyvinyl alcohol, nano-hydroxyapatite and cellulose nanocrystals. Cellulose, 2014, 21, 3409-3426.	4.9	135
8	Engineered bamboo scrimber: Influence of density on the mechanical and water absorption properties. Construction and Building Materials, 2016, 127, 815-827.	7.2	122
9	Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers, 2020, 12, 176.	4.5	122
10	Performance analysis of a Savonius hydrokinetic turbine having twisted blades. Renewable Energy, 2017, 108, 502-522.	8.9	116
11	Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chemical Engineering Journal, 2017, 317, 119-131.	12.7	113
12	Additive Manufacturing Methods for Producing Hydroxyapatite and Hydroxyapatite-Based Composite Scaffolds: A Review. Frontiers in Materials, 2019, 6, .	2.4	113
13	Biowaste Sago Bark Based Catalyst Free Carbon Nanospheres: Waste to Wealth Approach. ACS Sustainable Chemistry and Engineering, 2015, 3, 2247-2253.	6.7	111
14	pH and near-infrared active; chitosan-coated halloysite nanotubes loaded with curcumin-Au hybrid nanoparticles for cancer drug delivery. International Journal of Biological Macromolecules, 2018, 112, 119-125.	7.5	106
15	Synthesis and characterization of methylcellulose/PVA based porous composite. Carbohydrate Polymers, 2012, 88, 1364-1372.	10.2	102
16	Mechanically viscoelastic nanoreinforced hybrid hydrogels composed of polyacrylamide, sodium carboxymethylcellulose, graphene oxide, and cellulose nanocrystals. Carbohydrate Polymers, 2018, 193, 228-238.	10.2	98
17	Performance analysis of a single stage modified Savonius hydrokinetic turbine having twisted blades. Renewable Energy, 2017, 113, 461-478.	8.9	94
18	A novel use of cellulose based filter paper containing silver nanoparticles for its potential application as wound dressing agent. International Journal of Biological Macromolecules, 2018, 108, 455-461.	7.5	93

#	Article	IF	CITATIONS
19	Liquefaction of lignocellulosic materials and its applications in wood adhesives—A review. Industrial Crops and Products, 2018, 124, 325-342.	5.2	93
20	Development of biomimetic electrospun polymeric biomaterials for bone tissue engineering. A review. Journal of Biomaterials Science, Polymer Edition, 2019, 30, 1308-1355.	3.5	93
21	Estimation of Number of Graphene Layers Using Different Methods: A Focused Review. Materials, 2021, 14, 4590.	2.9	87
22	Development of sodium alginate-xanthan gum based nanocomposite scaffolds reinforced with cellulose nanocrystals and halloysite nanotubes. Polymer Testing, 2017, 63, 214-225.	4.8	83
23	Multifunctional Polymeric Nanoplatforms for Brain Diseases Diagnosis, Therapy and Theranostics. Biomedicines, 2020, 8, 13.	3.2	81
24	Fabrication, characterization and in vitro biocompatibility of electrospun hydroxyethyl cellulose/poly (vinyl) alcohol nanofibrous composite biomaterial for bone tissue engineering. Chemical Engineering Science, 2016, 144, 17-29.	3.8	78
25	Catalyst free silica templated porous carbon nanoparticles from bio-waste materials. Chemical Communications, 2014, 50, 12702-12705.	4.1	77
26	Delignified Wood from Understanding the Hierarchically Aligned Cellulosic Structures to Creating Novel Functional Materials: A Review. Advanced Sustainable Systems, 2021, 5, 2000251.	5.3	70
27	Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: Drug release and biocompatibility analyses. International Journal of Biological Macromolecules, 2017, 101, 165-171.	7.5	68
28	Enhanced physical, mechanical, and cytocompatibility behavior of polyelectrolyte complex hydrogels by reinforcing halloysite nanotubes and graphene oxide. Composites Science and Technology, 2019, 175, 35-45.	7.8	66
29	High performance supercapacitor using catalysis free porous carbon nanoparticles. Journal Physics D: Applied Physics, 2014, 47, 495307.	2.8	64
30	Redox responsive xylan-SS-curcumin prodrug nanoparticles for dual drug delivery in cancer therapy. Materials Science and Engineering C, 2020, 107, 110356.	7.3	61
31	Electrospun hydroxyethyl cellulose nanofibers functionalized with calcium phosphate coating for bone tissue engineering. RSC Advances, 2015, 5, 29497-29504.	3.6	54
32	Polysaccharides based antibacterial polyelectrolyte hydrogels with silver nanoparticles. Materials Letters, 2016, 184, 189-192.	2.6	53
33	Xanthan gum/bioactive silica glass hybrid scaffolds reinforced with cellulose nanocrystals: Morphological, mechanical and in vitro cytocompatibility study. Materials Letters, 2017, 193, 274-278.	2.6	53
34	Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. Journal of Materials Science and Technology, 2018, 34, 1371-1377.	10.7	53
35	3D printable carboxylated cellulose nanocrystal-reinforced hydrogel inks for tissue engineering. Biofabrication, 2020, 12, 025029.	7.1	49
36	Synthesis And Characterization Of Cellulose Nanocrystals/PVA Based Bionanocomposite. Advanced Materials Letters, 2013, 4, 626-631.	0.6	46

#	Article	IF	CITATIONS
37	An interconnection between COVID-19 and climate change problem. Journal of Statistics and Management Systems, 2021, 24, 281-300.	0.6	46
38	Hydrophobic treatment of wood fibrous thermal insulator by octadecyltrichlorosilane and its influence on hygric properties and resistance against moulds. Composites Part B: Engineering, 2016, 106, 285-293.	12.0	42
39	Nanoporous Sodium Carboxymethyl Cellulose-g-poly (Sodium Acrylate)/FeCl3 Hydrogel Beads: Synthesis and Characterization. Gels, 2020, 6, 49.	4.5	42
40	Photo-mediated optimized synthesis of silver nanoparticles using the extracts of outer shell fibre of Cocos nucifera L. fruit and detection of its antioxidant, cytotoxicity and antibacterial potential. Saudi Journal of Biological Sciences, 2021, 28, 980-987.	3.8	42
41	Development of halloysite nanotube/carboxylated-cellulose nanocrystal-reinforced and ionically-crosslinked polysaccharide hydrogels. Materials Science and Engineering C, 2019, 104, 109983.	7.3	41
42	Environmental Impact of Textile Reinforced Concrete Facades Compared to Conventional Solutions—LCA Case Study. Materials, 2019, 12, 3194.	2.9	41
43	Influence of surface modification of wood with octadecyltrichlorosilane on its dimensional stability and resistance against Coniophora puteana and molds. Cellulose, 2016, 23, 3249-3263.	4.9	40
44	Zinc Oxide Nanoparticles Functionalized on Hydrogel Grafted Silk Fibroin Fabrics as Efficient Composite Dressing. Biomolecules, 2020, 10, 710.	4.0	39
45	Poly (vinyl alcohol)-alginate as potential matrix for various applications: A focused review. Carbohydrate Polymers, 2022, 277, 118881.	10.2	39
46	Novel bio-based solid acid catalyst derived from waste yeast residue for biodiesel production. Renewable Energy, 2020, 159, 127-139.	8.9	38
47	Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Seminars in Cancer Biology, 2021, 69, 325-336.	9.6	38
48	Biodegradable Tragacanth Gum Based Silver Nanocomposite Hydrogels and Their Antibacterial Evaluation. Journal of Polymers and the Environment, 2018, 26, 778-788.	5.0	37
49	Enhanced mechanical, biomineralization, and cellular response of nanocomposite hydrogels by bioactive glass and halloysite nanotubes for bone tissue regeneration. Materials Science and Engineering C, 2021, 128, 112236.	7.3	37
50	Tunable Intracellular Degradable Periodic Mesoporous Organosilica Hybrid Nanoparticles for Doxorubicin Drug Delivery in Cancer Cells. ACS Biomaterials Science and Engineering, 2018, 4, 175-183.	5.2	36
51	Fabrication of Graphene Oxide and Nanohydroxyapatite Reinforced Gelatin–Alginate Nanocomposite Scaffold for Bone Tissue Regeneration. Frontiers in Materials, 2020, 7, .	2.4	36
52	Fabrication of medium density fibreboard from enzyme treated rubber wood (Hevea brasiliensis) fibre and modified organosolv lignin. International Journal of Adhesion and Adhesives, 2013, 44, 99-104.	2.9	35
53	Surface modification of Norway spruce wood by octadecyltrichlorosilane (OTS) nanosol by dipping and water vapour diffusion properties of the OTS-modified wood. Holzforschung, 2017, 72, 45-56.	1.9	35
54	Thermal and mechanical properties of urea-formaldehyde (UF) resin combined with multiwalled carbon nanotubes (MWCNT) as nanofiller and fiberboards prepared by UF-MWCNT. Holzforschung, 2015, 69, 199-205.	1.9	34

#	Article	lF	CITATIONS
55	Liquefied-Wood-Based Polyurethane–Nanosilica Hybrid Coatings and Hydrophobization by Self-Assembled Monolayers of Orthotrichlorosilane (OTS). ACS Sustainable Chemistry and Engineering, 2015, 3, 2533-2541.	6.7	34
56	Biodegradation of chlorinated organic pesticides endosulfan and chlorpyrifos in soil extract broth using fungi. Remediation, 2019, 29, 63-77.	2.4	34
57	Influence of activated charcoal as filler on the properties of wood composites. International Journal of Adhesion and Adhesives, 2013, 46, 34-39.	2.9	33
58	Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. Fruits and Investigation of its Radical Scavenging Potential and Cytotoxicity Activities. Journal of Photochemistry and Photobiology B: Biology, 2018, 188, 116-125.	3.8	31
59	Life Cycle Assessment of Plywood Manufacturing Process in China. International Journal of Environmental Research and Public Health, 2019, 16, 2037.	2.6	31
60	Poly(acrylamidoglycolic acid) nanocomposite hydrogels reinforced with cellulose nanocrystals for pH-sensitive controlled release of diclofenac sodium. Polymer Testing, 2017, 64, 175-182.	4.8	30
61	Hydrophobicity and resistance against microorganisms of heat and chemically crosslinked poly(vinyl) Tj ETQq1 1	0.784314 12.7	rgBT /Overlo
62	Verwendung von Aluminiumoxid-Nanopartikeln in Holzwerkstoffen zur Verbesserung des WA¤medurchgangs beim HeiAŸpressen. European Journal of Wood and Wood Products, 2013, 71, 193-198.	2.9	29
63	Production of levulinic acid: A promising building block material for pharmaceutical and food industry. Materials Today: Proceedings, 2020, 29, 790-793.	1.8	28
64	RTV silicone rubber composites reinforced with carbon nanotubes, titanium-di-oxide and their hybrid: Mechanical and piezoelectric actuation performance. Nano Materials Science, 2021, 3, 233-240.	8.8	28
65	Effect of modified cellulose nanocrystals on microstructural and mechanical properties of polyvinyl alcohol/ovalbumin biocomposite scaffolds. Materials Letters, 2014, 129, 61-64.	2.6	27
66	Effect of number of stages on the performance characteristics of modified Savonius hydrokinetic turbine. Ocean Engineering, 2020, 217, 108090.	4.3	25
67	Properties of Silicone Rubber-Based Composites Reinforced with Few-Layer Graphene and Iron Oxide or Titanium Dioxide. Polymers, 2021, 13, 1550.	4.5	24
68	Property improvements of alkali resistant glass fibres/epoxy composite with nanosilica for textile reinforced concrete applications. Materials and Design, 2016, 89, 146-155.	7.0	23
69	Extractive separation of levulinic acid using natural and chemical solvents. Chemical Data Collections, 2020, 28, 100417.	2.3	23
70	Efficacy of Bacterial Nanocellulose in Hard Tissue Regeneration: A Review. Materials, 2021, 14, 4777.	2.9	23
71	Polysaccharide based hydrogels reinforced with halloysite nanotubes via polyelectrolyte complexation. Materials Letters, 2018, 213, 231-235.	2.6	23
72	Electrospun nanocarriers for delivering natural products for cancer therapy. Trends in Food Science and Technology, 2021, 118, 887-904.	15.1	23

#	Article	IF	CITATIONS
73	Textile-reinforced concrete facade panels with rigid foam core prisms. Journal of Sandwich Structures and Materials, 2016, 18, 200-214.	3.5	22
74	A review of tourism sustainability in the era of Covid-19. Journal of Statistics and Management Systems, 2022, 25, 1871-1888.	0.6	22
75	Coating of wood by means of electrospun nanofibers based on PVA/SiO ₂ and its hydrophobization with octadecyltrichlorosilane (OTS). Holzforschung, 2017, 71, 225-231.	1.9	20
76	Crosstalk of Long Non-coding RNAs and EMT: Searching the Missing Pieces of an Incomplete Puzzle for Lung Cancer Therapy. Current Cancer Drug Targets, 2021, 21, 640-665.	1.6	20
77	New Horizons in Hydrogels for Methotrexate Delivery. Gels, 2021, 7, 2.	4.5	20
78	Molybdenum disulfide (MoS ₂)-based nanostructures for tissue engineering applications: prospects and challenges. Journal of Materials Chemistry B, 2022, 10, 2761-2780.	5.8	20
79	Fabrication of poly (vinyl alcohol)/ovalbumin/cellulose nanocrystals/nanohydroxyapatite based biocomposite scaffolds. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 191-201.	3.4	19
80	Isolation and molecular characterization of dengue virus clinical isolates from pediatric patients in New Delhi. International Journal of Infectious Diseases, 2019, 84, S25-S33.	3.3	19
81	Resistance of bamboo scrimber against white-rot and brown-rot fungi. Wood Material Science and Engineering, 2020, 15, 57-63.	2.3	19
82	Mechanical, Electrical, and Biological Properties of Mechanochemically Processed Hydroxyapatite Ceramics. Nanomaterials, 2021, 11, 2216.	4.1	19
83	Indian education system and growing number of online conferences: Scenario under COVID-19. Asian Journal of Management, 2020, 11, 395-401.	0.7	19
84	Room-temperature vulcanized silicone rubber/barium titanate–based high-performance nanocomposite for energy harvesting. Materials Today Chemistry, 2020, 16, 100232.	3.5	18
85	Redox-sensitive nanoparticles based on xylan-lipoic acid conjugate for tumor targeted drug delivery of niclosamide in cancer therapy. Carbohydrate Research, 2021, 499, 108222.	2.3	16
86	Artificial Intelligence: Technology 4.0 as a solution for healthcare workers during COVID-19 pandemic. Acta Universitatis Bohemiae Meridionales: Vedecky Casopis Pro Ekonomiku, Rizeni A Obchod, 2021, 24, 19-35.	0.5	16
87	Nanohydroxyapatite-coated hydroxyethyl cellulose/poly (vinyl) alcohol electrospun scaffolds and their cellular response. International Journal of Polymeric Materials and Polymeric Biomaterials, 2017, 66, 115-122.	3.4	15
88	Industrially viable technique for the preparation of <scp>HDPE</scp> /fly ash composites at high loading: Thermal, mechanical, and rheological interpretations. Journal of Applied Polymer Science, 2018, 135, 459951.	2.6	14
89	Optimization of processing parameters of medium density fiberboard using response surface methodology for multiwalled carbon nanotubes as a nanofiller. European Journal of Wood and Wood Products, 2017, 75, 203-213.	2.9	13
90	Application of High Conductive Nanoparticles to Enhance the Thermal and Mechanical Properties of Wood Composite. Materials Today: Proceedings, 2018, 5, 3143-3149.	1.8	13

#	Article	IF	CITATIONS
91	Separation of Levulinic Acid by Reaction with Tri- <i>n</i> butylphosphate Diluted in Nontoxic Solvents. Journal of Chemical & Engineering Data, 2020, 65, 3002-3007.	1.9	13
92	Properties of Injection Molded Biocomposites Reinforced with Wood Particles of Short-Rotation Aspen and Willow. Polymers, 2020, 12, 257.	4.5	13
93	Enactment of Sustainable Technovations on Healthcare Sectors. Asia Pacific Journal of Health Management, 2021, 16, 184-192.	0.3	13
94	Cellulose-Derived Nanostructures as Sustainable Biomass for Supercapacitors: A Review. Polymers, 2022, 14, 169.	4.5	13
95	Fabrication and Characterization of Multicomponent Polysaccharide/Nanohydroxyapatite Composite Scaffolds. Polymer-Plastics Technology and Engineering, 2017, 56, 983-991.	1.9	12
96	Influence of liquefied wood polyol on the physical-mechanical and thermal properties of epoxy based polymer. Polymer Testing, 2017, 64, 207-216.	4.8	12
97	Influence of Different Pretreatments on the Structure and Hydrolysis Behavior of Bamboo: A Comparative Study. Materials, 2019, 12, 2570.	2.9	12
98	Strontium and selenium doped bioceramics incorporated polyacrylamide-carboxymethylcellulose hydrogel scaffolds: mimicking key features of bone regeneration. Journal of Asian Ceramic Societies, 2021, 9, 531-548.	2.3	12
99	Central Composite Design Approach for Optimization of Levulinic Acid Separation by Reactive Components. Industrial & amp; Engineering Chemistry Research, 2021, 60, 13692-13700.	3.7	12
100	Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics, 2022, 14, 993.	4.5	12
101	Single-Crystalline ZnO/Graphene Quantum Dots Phosphors-Converted White Light-Emitting Diodes. IEEE Photonics Technology Letters, 2019, 31, 203-205.	2.5	11
102	Flow field and performance study of Savonius water turbine. Materials Today: Proceedings, 2021, 46, 5219-5222.	1.8	11
103	Extractives of Stemwood and Sawmill Residues of Scots Pine (Pinus sylvestris L.) for Biorefining in Four Climatic Regions in Finland—Phenolic and Resin Acid Compounds. Forests, 2021, 12, 192.	2.1	11
104	Development of antibacterial paper coated with sodium hyaluronate stabilized curcumin-Ag nanohybrid and chitosan via polyelectrolyte complexation for medical applications. Materials Research Express. 2017. 4. 115401.	1.6	10
105	An empirical study of marketing of SMEs in the tourism sector. Small Enterprise Research: the Journal of SEAANZ, 2021, 28, 314-328.	1.9	10
106	Characterization of spaces of type \$\$W\$\$ W and pseudo-differential operators of infinite order involving fractional Fourier transform. Journal of Pseudo-Differential Operators and Applications, 2014. 5, 215-230.	0.7	9
107	Morphological, mechanical, and <i>in vitro</i> cytocompatibility analysis of poly(vinyl) Tj ETQq1 1 0.784314 rgBT of Polymer Analysis and Characterization, 2017, 22, 139-151.	/Overlock 1.9	10 Tf 50 1
108	Adoption of Robotics Technology in Healthcare Sector. Lecture Notes in Electrical Engineering, 2022, , 405-414.	0.4	9

#	Article	IF	CITATIONS
109	Potential of magnetic nano cellulose in biomedical applications: Recent Advances. , 2021, 1, 32-47.		9
110	Emotional intelligence can help healthcare professionals and managers: A way deal COVID-19 pandemic. Asian Journal of Management, 2021, , 353-358.	0.7	9
111	Nanocoating on alkali-resistant glass fibers by octadecyltrichlorosilane to improve the mechanical strength of fibers and fibers/epoxy composites. Textile Reseach Journal, 2018, 88, 1038-1046.	2.2	8
112	Assessment of hydrokinetic energy – A case study of eastern Yamuna canal. Materials Today: Proceedings, 2021, 46, 5223-5227.	1.8	8
113	Molecular Perspective of Nanoparticle Mediated Therapeutic Targeting in Breast Cancer: An Odyssey of Endoplasmic Reticulum Unfolded Protein Response (UPRER) and Beyond. Biomedicines, 2021, 9, 635.	3.2	8
114	Gamification as a Sustainable Tool for HR Managers. Acta Universitatis Bohemiae Meridionales: Vedecky Casopis Pro Ekonomiku, Rizeni A Obchod, 2021, 24, 1-14.	0.5	8
115	The Effect of Surface Treatments of Textile Reinforcement on Mechanical Parameters of HPC Facade Elements. Key Engineering Materials, 0, 677, 203-206.	0.4	7
116	Experimental investigation using conventional and natural extractants for liquid-liquid extraction of glutaric acid. Chemical Data Collections, 2022, 37, 100790.	2.3	7
117	Bioaugmentation of endosulfan contaminated soil in artificial bed treatment using selected fungal species. Bioremediation Journal, 2019, 23, 196-214.	2.0	6
118	Optimization and experimental design by response surface method for reactive extraction of glutaric acid. International Journal of Chemical Reactor Engineering, 2022, 20, 511-520.	1.1	6
119	Impact of Covid-19 on the Mental Health of Healthcare Workers: Predisposing factors, prevalence and supportive strategies. Asia Pacific Journal of Health Management, 2021, 16, 260-265.	0.3	6
120	Effect of graphite nanoplatelets surface area on mechanical properties of roomâ€ŧemperature vulcanized silicone rubber nanocomposites. Journal of Applied Polymer Science, 2022, 139, .	2.6	6
121	Stretchable piezoâ€electric energy harvesting device with high durability using carbon nanomaterials with different structure and their synergism with molybdenum disulfide. Journal of Vinyl and Additive Technology, 2022, 28, 813-827.	3.4	6
122	Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers, 2022, 14, 832.	4.5	5
123	Disulfide bond-driven hyaluronic acid/sericin nanoparticles for wound-healing application. Journal of Nanostructure in Chemistry, 2023, 13, 463-480.	9.1	5
124	Non-Covalent Assembly of Maghemite-Multiwalled Carbon Nanotubes for Efficient Lead Removal from Aqueous Solution. Australian Journal of Chemistry, 2013, 66, 1440.	0.9	4
125	GaN phosphors converted white lightâ€emitting diodes for high luminous efficacy and improved thermal stability. IET Optoelectronics, 2020, 14, 155-158.	3.3	4
126	Liquid-liquid extraction of lactic acid using non-toxic solvents. Chemical Data Collections, 2022, 38, 100823.	2.3	4

#	Article	IF	CITATIONS
127	Separation of succinic acid from aqueous phase using nontoxic solvents. Chemical Data Collections, 2022, 39, 100866.	2.3	4
128	Life under COVID-19 lockdown: an experience of old age people in India. Working With Older People, 2022, ahead-of-print, .	0.4	3
129	Quantum dot scaffold phosphors: Maximizing luminescence quantum yield via different stock environments. Materials Letters, 2020, 259, 126846.	2.6	2
130	Editorial: Bioceramics and Bioactive Glasses for Hard Tissue Regeneration. Frontiers in Materials, 2020, 7, .	2.4	2
131	Emergence of Bioprinting in Tissue Engineering: A Mini Review. Advances in Tissue Engineering & Regenerative Medicine Open Access, 2016, 1, .	0.1	2
132	Recovery of Levulinic Acid in its Production Using Agriculture Waste Residue. SSRN Electronic Journal, 0, , .	0.4	2
133	Milkiana Cattle feed- an entrepreneurial saga of business integration: case study. Small Enterprise Research: the Journal of SEAANZ, 0, , 1-9.	1.9	2
134	Influence of Carbon Nanotubes on Mechanical Properties of High Performance Concrete (HPC). Key Engineering Materials, 0, 714, 107-110.	0.4	1
135	Comparison of Different Types of Glass Reinforcement for HPC Facade Elements from Mechanical and Economical Aspects. Key Engineering Materials, 0, 722, 286-291.	0.4	1
136	Future Perspectives for Gel-Inks for 3D Printing in Tissue Engineering. Gels Horizons: From Science To Smart Materials, 2021, , 383-395.	0.3	1
137	Stimuli-Responsive Nano-Drug Delivery Systems for Cancer Therapy. Nanotechnology in the Life Sciences, 2020, , 151-162.	0.6	1
138	Polysaccharides-Based Biomaterials for Surgical Applications. , 2022, , 943-974.		1
139	Artificial Intelligence (Online Resource): A panacea for SMEs in healthcare. Asia Pacific Journal of Health Management, 2021, 16, 230-235.	0.3	1
140	Asymptotic Series of General Symbol of Pseudo-Differential Operator Involving Fractional Fourier Transform. ISRN Mathematical Analysis, 2013, 2013, 1-6.	0.4	0
141	Characterization of W p -type of spaces involving fractional Fourier transform. Journal of Inequalities and Applications, 2015, 2015, .	1.1	Ο
142	Bioactive glass–based composites in bone tissue engineering: synthesis, processing, and cellular responses. , 2019, , 397-439.		0
143	Three-Dimensional Self-healing Scaffolds for Tissue Engineering Applications. Gels Horizons: From Science To Smart Materials, 2021, , 129-159.	0.3	0
144	Pseudo-differential operators and Localization operators on \$S^{mu}_{u}(mathbb R)\$ space involving fractional Fourier transform. Novi Sad Journal of Mathematics, 2015, 45, 285-301.	0.2	0

#	Article	IF	CITATIONS
145	Recent Advances In Biomaterials For Medical Applications: A Short Review of our Laboratory's Research. Biomaterials and Medical Applications, 2018, 02, .	0.0	0
146	The Continuous Fractional Wavelet Transform on W-Type Spaces. Journal of the Indian Mathematical Society, 2018, 85, 377.	0.1	0
147	Microalgae: A Potential Source of Biofuel. , 2018, , 119-152.		Ο
148	Perspective of reactive separation of levulinic acid in conceptual mixer settler reactor. Environmental Science and Pollution Research, 2023, 30, 24890-24898.	5.3	0
149	A study of Economic complexity of Indian Exports Vis-Ã-vis China: A Review Paper based on Atlas of Economic Complexity theory. Acta Universitatis Bohemiae Meridionales: Vedecky Casopis Pro Ekonomiku, Rizeni A Obchod, 2022, 24, 39-56.	0.5	Ο
150	Application of Disruptive Technologies on Environmental Health: An overview of artificial intelligence, blockchain and internet of things. Asia Pacific Journal of Health Management, 2021, 16, 251-259.	0.3	0