Sandeep Kumar Gundam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6864531/publications.pdf

Version: 2024-02-01

22 papers 677 citations

623574 14 h-index 713332 21 g-index

22 all docs 22 docs citations

times ranked

22

1310 citing authors

#	Article	IF	CITATIONS
1	Size Tunable Cesium Antimony Chloride Perovskite Nanowires and Nanorods. Chemistry of Materials, 2018, 30, 2135-2142.	3.2	132
2	Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose. Nanoscale, 2015, 7, 9062-9074.	2.8	74
3	Demonstration of Ultrarapid Interfacial Formation of 1D Fullerene Nanorods with Photovoltaic Properties. ACS Applied Materials & Samp; Interfaces, 2014, 6, 15597-15603.	4.0	66
4	Easy extraction of water-soluble graphene quantum dots for light emitting diodes. RSC Advances, 2015, 5, 27711-27716.	1.7	60
5	Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications. ACS Nano, 2018, 12, 4727-4735.	7.3	51
6	Quasi-2D perovskite emitters: a boon for efficient blue light-emitting diodes. Journal of Materials Chemistry C, 2020, 8, 14334-14347.	2.7	40
7	Encapsulation of CsPbBr ₃ Nanocrystals by a Tripodal Amine Markedly Improves Photoluminescence and Stability Concomitantly via Anion Defect Elimination. Chemistry of Materials, 2020, 32, 7159-7171.	3.2	32
8	Supramolecular Aggregates of Tetraphenylethene-Cored AlEgen toward Mechanoluminescent and Electroluminescent Devices. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17409-17418.	4.0	31
9	Shape-controlled cobalt phosphide nanoparticles as volatile organic solvent sensor. Journal of Materials Chemistry C, 2016, 4, 4967-4977.	2.7	29
10	Hierarchical heterostructure of Ag-nanoparticle decorated fullerene nanorods (Ag–FNRs) as an effective single particle freestanding SERS substrate. Physical Chemistry Chemical Physics, 2018, 20, 18873-18878.	1.3	27
11	Induced Aggregation of AIEâ€Active Mono yclometalated Ir(III) Complex into Supramolecular Branched Wires for Lightâ€Emitting Diodes. Small, 2017, 13, 1603780.	5.2	23
12	Enhancing Performances of Hybrid Perovskite Light Emitting Diodes with Thickness Controlled PMMA Interlayer. Bulletin of the Chemical Society of Japan, 2018, 91, 1241-1248.	2.0	22
13	Triboelectric generator composed of bulk poly(vinylidene fluoride) and polyethylene polymers for mechanical energy conversion. RSC Advances, 2016, 6, 910-917.	1.7	16
14	Large-area transparent flexible guanidinium incorporated MAPbI3 microstructures for high-performance photodetectors with enhanced stability. Nanoscale Horizons, 2020, 5, 696-704.	4.1	15
15	Transparent, flexible MAPbl ₃ perovskite microwire arrays passivated with ultra-hydrophobic supramolecular self-assembly for stable and high-performance photodetectors. Nanoscale, 2020, 12, 11986-11996.	2.8	14
16	Resonant energy transfer in a van der Waals stacked MoS ₂ – functionalized graphene quantum dot composite with <i>ab initio</i> validation. Nanoscale, 2018, 10, 16822-16829.	2.8	10
17	Perovskite Nanowires for Next-Generation Optoelectronic Devices: Lab to Fab. ACS Applied Energy Materials, 2022, 5, 1342-1377.	2.5	9
18	Vortex-Aligned Ordered Film of Crystalline Fullerene C ₇₀ Microtubes with Enhanced Photoluminescence and Photovoltaics Properties. Journal of Nanoscience and Nanotechnology, 2020, 20, 2971-2978.	0.9	8

#	Article	IF	CITATIONS
19	Synthesis of High Molecular Weight 1,4-Polynaphthalene for Solution-Processed True Color Blue Light Emitting Diode. Macromolecules, 2018, 51, 8324-8329.	2.2	7
20	Colossal magnetoresistance in amino-functionalized graphene quantum dots at room temperature: manifestation of weak anti-localization and doorway to spintronics. Nanoscale, 2016, 8, 8245-8254.	2.8	6
21	Raman imaging and stress quantification in selfâ€assembled graphene oxide fiber †Latin Letters'. Journal of Raman Spectroscopy, 2016, 47, 845-851.	1.2	3
22	Probing the charge transfer and electron–hole asymmetry in graphene–graphene quantum dot heterostructure. Nanotechnology, 2022, 33, 325704.	1.3	2