Nick Talbot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686430/publications.pdf

Version: 2024-02-01

197 papers 30,992 citations

73 h-index 170

219 all docs

219 docs citations

times ranked

219

36961 citing authors

g-index

#	Article	IF	CITATIONS
1	Foliar Diseases and the Associated Fungi in Rice Cultivated in Kenya. Plants, 2022, 11, 1264.	1.6	2
2	The Biology of Invasive Growth by the Rice Blast Fungus Magnaporthe oryzae. Methods in Molecular Biology, 2021, 2356, 19-40.	0.4	7
3	Protein glycosylation during infection by plant pathogenic fungi. New Phytologist, 2021, 230, 1329-1335.	3.5	18
4	Chitosan inhibits septinâ€mediated plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> in a protein kinase C and Nox1 NADPH oxidaseâ€dependent manner. New Phytologist, 2021, 230, 1578-1593.	3.5	21
5	Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2021, 154, 103562.	0.9	40
6	A putative PKA phosphorylation site S227 in MoSom1 is essential for infectionâ€related morphogenesis and pathogenicity in Magnaporthe oryzae. Cellular Microbiology, 2021, 23, e13370.	1.1	2
7	Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. Plant Disease, 2021, 105, 2749-2770.	0.7	15
8	From appressorium to transpressoriumâ€"Defining the morphogenetic basis of host cell invasion by the rice blast fungus. PLoS Pathogens, 2021, 17, e1009779.	2.1	28
9	Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nature Microbiology, 2021, 6, 1383-1397.	5.9	44
10	Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 155-171.	0.8	22
11	Getting a grip on blast. Nature Microbiology, 2020, 5, 1457-1458.	5.9	2
12	Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nature Microbiology, 2020, 5, 1565-1575.	5.9	44
13	The sorting nexin FgAtg20 is involved in the Cvt pathway, nonâ€selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cellular Microbiology, 2020, 22, e13208.	1.1	11
14	A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 2019, 574, 423-427.	13.7	87
15	Plant health emergencies demand open science: Tackling a cereal killer on the run. PLoS Biology, 2019, 17, e3000302.	2.6	28
16	Appressoria. Current Biology, 2019, 29, R144-R146.	1.8	43
17	Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5613-5622.	3.3	37
18	Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in <i>Magnaporthe oryzae</i> li>. Genetics, 2019, 211, 151-167.	1.2	23

#	Article	IF	CITATIONS
19	<i>Pyricularia graminisâ€tritici </i> is not the correct species name for the wheat blast fungus: response to Ceresini <i>etÂal</i> . (MPP 20:2). Molecular Plant Pathology, 2019, 20, 173-179.	2.0	42
20	Cycling in synchrony. ELife, 2019, 8, .	2.8	0
21	Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . MBio, 2018, 9, .	1.8	163
22	A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science, 2018, 359, 1399-1403.	6.0	164
23	CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Scientific Reports, 2018, 8, 14355.	1.6	136
24	Osmotrophy. Current Biology, 2018, 28, R1179-R1180.	1.8	29
25	An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Current Biology, 2018, 28, 2136-2144.e7.	1.8	32
26	MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Autophagy, 2018, 14, 1543-1561.	4.3	89
27	The role of glycerol in the pathogenic lifestyle of the rice blast fungus <i>Magnaporthe oryzae</i> Environmental Microbiology, 2017, 19, 1008-1016.	1.8	84
28	The glycogen synthase kinase MoGsk1, regulated by Mps1 MAP kinase, is required for fungal development and pathogenicity in Magnaporthe oryzae. Scientific Reports, 2017, 7, 945.	1.6	18
29	The cyclin dependent kinase subunit Cks1 is required for infectionâ€associated development of the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 3959-3981.	1.8	13
30	Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E237-E244.	3.3	57
31	Cell cycle-dependent regulation of plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Communicative and Integrative Biology, 2017, 10, e1372067.	0.6	21
32	Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7, 11062.	1.6	69
33	Genotyping-by-Sequencing-Based Genetic Analysis of African Rice Cultivars and Association Mapping of Blast Resistance Genes Against <i>Magnaporthe oryzae</i> Populations in Africa. Phytopathology, 2017, 107, 1039-1046.	1.1	14
34	Fungal pathogenesis: Combatting the oxidative burst. Nature Microbiology, 2017, 2, 17095.	5.9	12
35	The βâ€1,3â€glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressoriumâ€mediated plant infection. Cellular Microbiology, 2017, 19, e12659.	1.1	51
36	Septins Focus Cellular Growth for Host Infection by Pathogenic Fungi. Frontiers in Cell and Developmental Biology, 2017, 5, 33.	1.8	31

#	Article	IF	Citations
37	Tpc1 is an important $Zn(II)2Cys6$ transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathogens, 2017, 13, e1006516.	2.1	56
38	Genome-Wide Association Mapping of Rice Resistance Genes Against <i>Magnaporthe oryzae</i> Isolates from Four African Countries. Phytopathology, 2016, 106, 1359-1365.	1.1	25
39	Nick Talbot. Current Biology, 2016, 26, R1122-R1124.	1.8	0
40	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	1.8	175
41	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	1.7	355
42	<i>ZNF1</i> Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus <i>Magnaporthe oryzae</i> Molecular Plant-Microbe Interactions, 2016, 29, 22-35.	1.4	38
43	Generic names in Magnaporthales. IMA Fungus, 2016, 7, 155-159.	1.7	98
44	Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Current Opinion in Microbiology, 2016, 34, 147-153.	2.3	117
45	4 Septation and Cytokinesis in Pathogenic Fungi. , 2016, , 67-79.		3
46	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
47	Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2016, 90, 61-68.	0.9	76
48	New and Improved Techniques for the Study of Pathogenic Fungi. Trends in Microbiology, 2016, 24, 35-50.	3.5	39
49	Harbouring public good mutants within a pathogen population can increase both fitness and virulence. ELife, 2016, 5, .	2.8	21
50	Protein kinase <scp>C</scp> is essential for viability of the rice blast fungus <scp><i>M</i></scp> <i>agnaporthe oryzae</i> . Molecular Microbiology, 2015, 98, 403-419.	1.2	35
51	Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology, 2015, 26, 8-13.	3.5	179
52	Taming a wild beast: Developing molecular tools and new methods to understand the biology of Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 193-195.	0.9	5
53	Plant Immunity: A Little Help from Fungal Friends. Current Biology, 2015, 25, R1074-R1076.	1.8	15
54	Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by <i>Magnaporthe oryzae</i> . Plant Cell, 2015, 27, 3277-3289.	3.1	79

#	Article	IF	CITATIONS
55	Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 102-109.	0.9	20
56	A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 118-124.	0.9	35
57	FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genetics and Biology, 2015, 83, 92-102.	0.9	4
58	Construction and high-throughput phenotypic screening of Zymoseptoria tritici over-expression strains. Fungal Genetics and Biology, 2015, 79, 110-117.	0.9	9
59	A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 125-131.	0.9	37
60	Characterisation of Four LIM Protein-Encoding Genes Involved in Infection-Related Development and Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e88246.	1.1	20
61	Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. Journal of Cell Biology, 2014, 204, 989-1007.	2.3	135
62	$\langle i \rangle N \langle i \rangle$ -Glycosylation of Effector Proteins by an α-1,3-Mannosyltransferase Is Required for the Rice Blast Fungus to Evade Host Innate Immunity Â. Plant Cell, 2014, 26, 1360-1376.	3.1	146
63	Long-distance endosome trafficking drives fungal effector production during plant infection. Nature Communications, 2014, 5, 5097.	5.8	86
64	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	0.9	133
65	FAR1 and FAR2 Regulate the Expression of Genes Associated with Lipid Metabolism in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e99760.	1.1	26
66	NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3179-3184.	3.3	168
67	Horizontal gene transfer in osmotrophs: playing with public goods. Nature Reviews Microbiology, 2013, 11, 720-727.	13.6	85
68	Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.	5.8	321
69	Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2013, 9, e1003604.	2.1	54
70	The MET13 Methylenetetrahydrofolate Reductase Gene Is Essential for Infection-Related Morphogenesis in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2013, 8, e76914.	1.1	43
71	Genome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2012, 8, e1002514.	2.1	162
72	Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology (United Kingdom), 2012, 158, 84-97.	0.7	29

#	Article	IF	CITATIONS
73	Effector-Mediated Suppression of Chitin-Triggered Immunity by <i>Magnaporthe oryzae</i> Is Necessary for Rice Blast Disease Â. Plant Cell, 2012, 24, 322-335.	3.1	493
74	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
75	Regulating morphogenetic transitions during development and pathogenesis of microbial eukaryotes. Current Opinion in Microbiology, 2012, 15, 633-636.	2.3	1
76	Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus, <i>Magnaporthe oryzae</i> . Science, 2012, 336, 1590-1595.	6.0	311
77	Magnaporthe oryzae Populations Adapted to Finger Millet and Rice Exhibit Distinctive Patterns of Genetic Diversity, Sexuality and Host Interaction. Molecular Biotechnology, 2012, 50, 145-158.	1.3	72
78	Infection-Associated Nuclear Degeneration in the Rice Blast Fungus Magnaporthe oryzae Requires Non-Selective Macro-Autophagy. PLoS ONE, 2012, 7, e33270.	1.1	33
79	RNA Interference of Endochitinases in the Sugarcane Endophyte Trichoderma virens 223 Reduces Its Fitness as a Biocontrol Agent of Pineapple Disease. PLoS ONE, 2012, 7, e47888.	1.1	36
80	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	1.5	902
81	A sterol $14\hat{l}\pm$ -demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2011, 48, 144-153.	0.9	59
82	Structure-Function Analysis of a CVNH-LysM Lectin Expressed during Plant Infection by the Rice Blast Fungus Magnaporthe oryzae. Structure, 2011, 19, 662-674.	1.6	47
83	Gene transfer into the fungi. Fungal Biology Reviews, 2011, 25, 98-110.	1.9	127
84	The biology of blast: Understanding how Magnaporthe oryzae invades rice plants. Fungal Biology Reviews, 2011, 25, 61-67.	1.9	26
85	Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15258-15263.	3.3	225
86	Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002385.	2.1	68
87	Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection. PLoS Pathogens, 2011, 7, e1002185.	2.1	147
88	Characterization of <i>MoLDB1</i> Required for Vegetative Growth, Infection-Related Morphogenesis, and Pathogenicity in the Rice Blast Fungus <i>Magnaporthe oryzae</i> Interactions, 2010, 23, 1260-1274.	1.4	35
89	MoRic8 Is a Novel Component of G-Protein Signaling During Plant Infection by the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 317-331.	1.4	42
90	Raiding the sweet shop. Nature, 2010, 468, 510-511.	13.7	12

#	Article	IF	CITATIONS
91	Comparative Genome Analysis Reveals an Absence of Leucine-Rich Repeat Pattern-Recognition Receptor Proteins in the Kingdom Fungi. PLoS ONE, 2010, 5, e12725.	1.1	31
92	Cell Cycle–Mediated Regulation of Plant Infection by the Rice Blast Fungus. Plant Cell, 2010, 22, 497-507.	3.1	144
93	An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21902-21907.	3.3	130
94	Spatial Uncoupling of Mitosis and Cytokinesis during Appressorium-Mediated Plant Infection by the Rice Blast Fungus <i>Magnaporthe oryzae</i> A. Plant Cell, 2010, 22, 2417-2428.	3.1	100
95	Living the Sweet Life: How Does a Plant Pathogenic Fungus Acquire Sugar from Plants?. PLoS Biology, 2010, 8, e1000308.	2.6	52
96	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	6.0	725
97	Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15967-15972.	3.3	270
98	Phylogenomic Analysis Demonstrates a Pattern of Rare and Ancient Horizontal Gene Transfer between Plants and Fungi. Plant Cell, 2009, 21, 1897-1911.	3.1	162
99	The emerging role of autophagy in plant pathogen attack and host defence. Current Opinion in Plant Biology, 2009, 12, 444-450.	3.5	43
100	Metabolomic analysis reveals a common pattern of metabolic reâ€programming during invasion of three host plant species by <i>Magnaporthe grisea</i> . Plant Journal, 2009, 59, 723-737.	2.8	209
101	Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 2009, 7, 185-195.	13.6	809
102	Realâ€time PCR quantification and liveâ€cell imaging of endophytic colonization of barley (<i>Hordeum) Tj ETQq0 2009, 182, 213-228.</i>	0 0 0 rgBT / 3.5	/Overlock 10
103	Fungal physiology – a future perspective. Microbiology (United Kingdom), 2009, 155, 3810-3815.	0.7	37
104	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	0.9	302
105	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445.	5.5	95
106	Unwrapping the <i>Laccaria</i> genome. New Phytologist, 2008, 180, 259-260.	3.5	0
107	Silencing the crowd: highâ€throughput functional genomics in <i>Magnaporthe oryzae</i> Microbiology, 2008, 68, 1341-1344.	1.2	8
108	Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi. Current Opinion in Plant Biology, 2008, 11, 367-372.	3.5	15

#	Article	IF	Citations
109	Moving targets: rapid evolution of oomycete effectors. Trends in Microbiology, 2008, 16, 507-510.	3.5	15
110	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	4.3	2,064
111	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	1.1	169
112	Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Research, 2007, 17, 1809-1822.	2.4	94
113	Autophagic Cell Death and its Importance for Fungal Developmental Biology and Pathogenesis. Autophagy, 2007, 3, 126-127.	4.3	23
114	Plant Parasitic Oomycetes Such as <i>Phytophthora </i> Species Contain Genes Derived from Three Eukaryotic Lineages. Plant Signaling and Behavior, 2007, 2, 112-114.	1.2	17
115	Insights from Sequencing Fungal and Oomycete Genomes: What Can We Learn about Plant Disease and the Evolution of Pathogenicity?. Plant Cell, 2007, 19, 3318-3326.	3.1	110
116	Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11772-11777.	3.3	367
117	Functional Analysis of Lipid Metabolism in Magnaporthe grisea Reveals a Requirement for Peroxisomal Fatty Acid β-Oxidation During Appressorium-Mediated Plant Infection. Molecular Plant-Microbe Interactions, 2007, 20, 475-491.	1.4	183
118	A Methodology for Comparative Functional Genomics. Journal of Integrative Bioinformatics, 2007, 4, 112-122.	1.0	1
119	Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Current Opinion in Microbiology, 2007, 10, 339-345.	2.3	62
120	Deadly special deliveries. Nature, 2007, 450, 41-43.	13.7	7
121	Fungal genomics goes industrial. Nature Biotechnology, 2007, 25, 542-543.	9.4	13
122	Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO Journal, 2007, 26, 3673-3685.	3.5	165
123	e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics, 2007, 8, 426.	1.2	32
124	Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus. Science, 2006, 312, 580-583.	6.0	457
125	Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection byMagnaporthe grisea. Molecular Microbiology, 2006, 61, 46-60.	1.2	97
126	Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Molecular Plant Pathology, 2006, 7, 61-70.	2.0	36

#	Article	IF	CITATIONS
127	A P-type ATPase required for rice blast disease and induction of host resistance. Nature, 2006, 440, 535-539.	13.7	96
128	Evolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms. Current Biology, 2006, 16, 1857-1864.	1.8	197
129	Immunofluorescence microscopy and immunogold EM for investigating fungal infection of plants. Nature Protocols, 2006, 1, 2506-2511.	5.5	15
130	The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochemical Society Transactions, 2005, 33, 384-388.	1.6	95
131	Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Molecular Microbiology, 2005, 56, 117-125.	1.2	44
132	A bioinformatic tool for analysis of EST transcript abundance during infection-related development by Magnaporthe grisea. Molecular Plant Pathology, 2005, 6, 503-512.	2.0	19
133	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	13.7	1,447
134	Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. Advances in Applied Microbiology, 2005, 57, 177-215.	1.3	18
135	Use of a Substrate/Alliinase Combination To Generate Antifungal Activity in Situ. Journal of Agricultural and Food Chemistry, 2005, 53, 574-580.	2.4	41
136	A Fungal Metallothionein Is Required for Pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16, 1575-1588.	3.1	91
137	Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Molecular Plant Pathology, 2004, 5, 253-265.	2.0	72
138	Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Molecular Microbiology, 2004, 53, 1695-1707.	1.2	146
139	Let there be blight: functional analysis of virulence in Phytophthora infestans. Molecular Microbiology, 2004, 51, 913-915.	1.2	1
140	Stage-specific cellular localisation of two hydrophobins during plant infection by the pathogenic fungus Cladosporium fulvum. Fungal Genetics and Biology, 2004, 41, 624-634.	0.9	24
141	The influence of genotypic variation on metabolite diversity in populations of two endophytic fungal species. Fungal Genetics and Biology, 2004, 41, 721-734.	0.9	22
142	Building filaments in the air: aerial morphogenesis in bacteria and fungi. Current Opinion in Microbiology, 2004, 7, 594-601.	2.3	91
143	Functional Genomic Analysis of the Rice Blast Fungus Magnaporthe grisea. Applied Mycology and Biotechnology, 2004, , 331-352.	0.3	3
144	Molecular Interactions of Phytopathogens and Hosts. , 2004, , 385-403.		0

#	Article	IF	Citations
145	Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO Journal, 2003, 22, 225-235.	3.5	202
146	Aerial Morphogenesis: Enter the Chaplins. Current Biology, 2003, 13, R696-R698.	1.8	27
147	A Relational Database for the Discovery of Genes Encoding Amino Acid Biosynthetic Enzymes in Pathogenic Fungi. Comparative and Functional Genomics, 2003, 4, 4-15.	2.0	9
148	A hybrid machine model of rice blast fungus, Magnaporthe grisea. BioSystems, 2003, 68, 223-228.	0.9	11
149	The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Molecular Microbiology, 2003, 47, 1601-1612.	1.2	239
150	Functional genomics of plant–pathogen interactions. New Phytologist, 2003, 159, 1-4.	3.5	69
151	Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea. Molecular Plant Pathology, 2003, 4, 31-41.	2.0	17
152	On the Trail of a Cereal Killer: Exploring the Biology of Magnaporthe grisea. Annual Review of Microbiology, 2003, 57, 177-202.	2.9	829
153	A Magnaporthe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection. Plant Cell, 2002, 14, 917-930.	3.1	157
154	Regulation of the MPG1 Hydrophobin Gene in the Rice Blast Fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15, 1253-1267.	1.4	70
155	Genomics of Phytopathogenic Fungi and the Development of Bioinformatic Resources. Molecular Plant-Microbe Interactions, 2002, 15, 421-427.	1.4	110
156	Genomics of parasitic and symbiotic fungi. Current Opinion in Microbiology, 2002, 5, 513-519.	2.3	72
157	Molecular Variability Studies of Magnaporthe grisea and Their Application in Disease Control. , 2002, , 153-169.		1
158	Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology (United Kingdom), 2002, 148, 1263-1279.	0.7	36
159	SURFACEATTACHMENT ANDPRE-PENETRATIONSTAGEDEVELOPMENT BYPLANTPATHOGENICFUNGI. Annual Review of Phytopathology, 2001, 39, 385-417.	3.5	440
160	Complementation of the Magnaporthe grisea î"cpkA Mutation by the Blumeria graminis PKA-c Gene: Functional Genetic Analysis of an Obligate Plant Pathogen. Molecular Plant-Microbe Interactions, 2001, 14, 1368-1375.	1.4	22
161	The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria of Magnaporthe grisea. Protoplasma, 2001, 216, 101-112.	1.0	89
162	PDE1 Encodes a P-Type ATPase Involved in Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 2001, 13, 1987-2004.	3.1	92

#	Article	IF	Citations
163	PDE1 Encodes a P-Type ATPase Involved in Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 2001, 13, 1987.	3.1	2
164	Genetics and genomics of the rice blast fungus magnaporthe grisea: Developing an experimental model for understanding fungal diseases of cereals. Advances in Botanical Research, 2001, 34, 263-287.	0.5	41
165	Fungal Hydrophobins., 2001,, 145-159.		3
166	MAP Kinase and Protein Kinase A: Dependent Mobilization of Triacylglycerol and Glycogen during Appressorium Turgor Generation by Magnaporthe grisea. Plant Cell, 2000, 12, 1703.	3.1	8
167	Taming the uncultured. Nature Biotechnology, 2000, 18, 146-147.	9.4	2
168	MAP Kinase and Protein Kinase A–Dependent Mobilization of Triacylglycerol and Glycogen during Appressorium Turgor Generation by Magnaporthe grisea. Plant Cell, 2000, 12, 1703-1718.	3.1	392
169	Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea. Plant Cell, 1999, 11, 2045.	3.1	2
170	Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea. Plant Cell, 1999, 11, 2045-2058.	3.1	334
171	Coming up for air and sporulation. Nature, 1999, 398, 295-296.	13.7	55
172	Poly(A) mRNA is attached to insect ovarian microtubules in vivo in a nucleotide-sensitive manner. Cytoskeleton, 1999, 43, 159-166.	4.4	11
173	PLANT BIOPHYSICS:Forcible Entry. Science, 1999, 285, 1860-1861.	6.0	11
174	Identification of Pathogenicity Mutants of the Rice Blast Fungus Magnaporthe grisea by Insertional Mutagenesis. Molecular Plant-Microbe Interactions, 1999, 12, 129-142.	1.4	143
175	Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO Journal, 1998, 17, 3838-3849.	3.5	102
176	Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea, one of which is highly expressed during initial stages of plant colonisation. Current Genetics, 1998, 33, 352-361.	0.8	42
177	Infection-related development in the rice blast fungus Magnaporthe grisea. Current Opinion in Microbiology, 1998, 1, 693-697.	2.3	93
178	High level expression of the Magnaporthe griseamitochondrial small sub-unit rRNA during rice leaf colonization and rapid down-regulation prior to the onset of disease symptoms. Physiological and Molecular Plant Pathology, 1998, 52, 335-352.	1.3	8
179	Identification and characterization of apf $1\hat{a}$ in a non-pathogenic mutant of the rice blast fungus Magnaporthe grise awhich is unable to differentiate appressoria. Physiological and Molecular Plant Pathology, 1998, 53, 239-251.	1.3	20
180	Hydrophobins and Repellents: Proteins with Fundamental Roles in Fungal Morphogenesis. Fungal Genetics and Biology, 1998, 23, 18-33.	0.9	266

#	Article	IF	CITATIONS
181	Nitrogen starvation of the rice blast fungusMagnaporthe griseamay act as an environmental cue for disease symptom expression. Physiological and Molecular Plant Pathology, 1997, 50, 179-195.	1.3	120
182	Glycerol generates turgor in rice blast. Nature, 1997, 389, 244-244.	13.7	491
183	Fungal biology: Growing into the air. Current Biology, 1997, 7, R78-R81.	1.8	42
184	The Influence of Genotype and Environment on the Physiological and Metabolic Diversity of Fusarium compactum. Fungal Genetics and Biology, 1996, 20, 254-267.	0.9	25
185	MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea Plant Cell, 1996, 8, 985-999.	3.1	335
186	MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell, 1996, 8, 985.	3.1	114
187	mRNA translocation and microtubules: insect ovary models. Trends in Cell Biology, 1995, 5, 361-365.	3.6	14
188	Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology, 1995, 3, 9-16.	3.5	172
189	Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea Plant Cell, 1993, 5, 1575-1590.	3.1	799
190	Identification and Characterization of MPG1, a Gene Involved in Pathogenicity from the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 1993, 5, 1575.	3.1	183
191	Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, <i>Magnaporthe grisea</i> Applied and Environmental Microbiology, 1993, 59, 585-593.	1.4	128
192	Genome Dynamics and Pathotype Evolution in the Rice Blast Fungus. Current Plant Science and Biotechnology in Agriculture, 1993, , 299-311.	0.0	4
193	Pulsed field gel electrophoresis reveals chromosome length differences between strains of Cladosporium fulvum (syn. Fulvia fulva). Molecular Genetics and Genomics, 1991, 229, 267-272.	2.4	40
194	Increase in ploidy in yeasts as a response to stressing media. Applied Microbiology and Biotechnology, 1989, 32, 167-169.	1.7	10
195	A rapid method for ploidy determination in fungal cells. Current Genetics, 1988, 14, 51-52.	0.8	16
196	Diploid construction by protoplast fusion in Fulvia fulva (syn. Cladosporium fulvum): genetic analysis of an imperfect fungal plant pathogen. Current Genetics, 1988, 14, 567-572.	0.8	22
197	Functional genomics of plant infection by the rice blast fungus Magnaporthe grisea., 0,, 227-254.		0