
Nick Talbot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686430/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	9.1	3,122
3	Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy, 2008, 4, 151-175.	9.1	2,064
4	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	27.8	1,447
5	Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genetics, 2011, 7, e1002230.	3.5	902
6	On the Trail of a Cereal Killer: Exploring the Biology ofMagnaporthe grisea. Annual Review of Microbiology, 2003, 57, 177-202.	7.3	829
7	Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 2009, 7, 185-195.	28.6	809
8	Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea Plant Cell, 1993, 5, 1575-1590.	6.6	799
9	Genome Expansion and Gene Loss in Powdery Mildew Fungi Reveal Tradeoffs in Extreme Parasitism. Science, 2010, 330, 1543-1546.	12.6	725
10	Effector-Mediated Suppression of Chitin-Triggered Immunity by <i>Magnaporthe oryzae</i> Is Necessary for Rice Blast Disease Â. Plant Cell, 2012, 24, 322-335.	6.6	493
11	Glycerol generates turgor in rice blast. Nature, 1997, 389, 244-244.	27.8	491
12	Autophagic Fungal Cell Death Is Necessary for Infection by the Rice Blast Fungus. Science, 2006, 312, 580-583.	12.6	457
13	SURFACEATTACHMENT ANDPRE-PENETRATIONSTAGEDEVELOPMENT BYPLANTPATHOGENICFUNGI. Annual Review of Phytopathology, 2001, 39, 385-417.	7.8	440
14	MAP Kinase and Protein Kinase A–Dependent Mobilization of Triacylglycerol and Glycogen during Appressorium Turgor Generation by Magnaporthe grisea. Plant Cell, 2000, 12, 1703-1718.	6.6	392
15	Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11772-11777.	7.1	367
16	Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biology, 2016, 14, 84.	3.8	355
17	MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea Plant Cell, 1996, 8, 985-999.	6.6	335
18	Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea. Plant Cell, 1999, 11, 2045-2058.	6.6	334

#	Article	IF	CITATIONS
19	Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nature Communications, 2013, 4, 1996.	12.8	321
20	Septin-Mediated Plant Cell Invasion by the Rice Blast Fungus, <i>Magnaporthe oryzae</i> . Science, 2012, 336, 1590-1595.	12.6	311
21	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	2.1	302
22	Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15967-15972.	7.1	270
23	Hydrophobins and Repellents: Proteins with Fundamental Roles in Fungal Morphogenesis. Fungal Genetics and Biology, 1998, 23, 18-33.	2.1	266
24	The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Molecular Microbiology, 2003, 47, 1601-1612.	2.5	239
25	Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 15258-15263.	7.1	225
26	Metabolomic analysis reveals a common pattern of metabolic reâ€programming during invasion of three host plant species by <i>Magnaporthe grisea</i> . Plant Journal, 2009, 59, 723-737.	5.7	209
27	Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO Journal, 2003, 22, 225-235.	7.8	202
28	Evolution of Filamentous Plant Pathogens: Gene Exchange across Eukaryotic Kingdoms. Current Biology, 2006, 16, 1857-1864.	3.9	197
29	Identification and Characterization of MPG1, a Gene Involved in Pathogenicity from the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 1993, 5, 1575.	6.6	183
30	Functional Analysis of Lipid Metabolism in Magnaporthe grisea Reveals a Requirement for Peroxisomal Fatty Acid β-Oxidation During Appressorium-Mediated Plant Infection. Molecular Plant-Microbe Interactions, 2007, 20, 475-491.	2.6	183
31	Regulation of appressorium development in pathogenic fungi. Current Opinion in Plant Biology, 2015, 26, 8-13.	7.1	179
32	Expansion of Signal Transduction Pathways in Fungi by Extensive Genome Duplication. Current Biology, 2016, 26, 1577-1584.	3.9	175
33	Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends in Microbiology, 1995, 3, 9-16.	7.7	172
34	Comparative Genome Analysis of Filamentous Fungi Reveals Gene Family Expansions Associated with Fungal Pathogenesis. PLoS ONE, 2008, 3, e2300.	2.5	169
35	NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3179-3184.	7.1	168
36	Tps1 regulates the pentose phosphate pathway, nitrogen metabolism and fungal virulence. EMBO Journal, 2007, 26, 3673-3685.	7.8	165

#	Article	IF	CITATIONS
37	A single fungal MAP kinase controls plant cell-to-cell invasion by the rice blast fungus. Science, 2018, 359, 1399-1403.	12.6	164
38	Gene Flow between Divergent Cereal- and Grass-Specific Lineages of the Rice Blast Fungus <i>Magnaporthe oryzae</i> . MBio, 2018, 9, .	4.1	163
39	Phylogenomic Analysis Demonstrates a Pattern of Rare and Ancient Horizontal Gene Transfer between Plants and Fungi. Plant Cell, 2009, 21, 1897-1911.	6.6	162
40	Genome-wide Transcriptional Profiling of Appressorium Development by the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2012, 8, e1002514.	4.7	162
41	A Magnaporthe grisea Cyclophilin Acts as a Virulence Determinant during Plant Infection. Plant Cell, 2002, 14, 917-930.	6.6	157
42	Anti-Apoptotic Machinery Protects the Necrotrophic Fungus Botrytis cinerea from Host-Induced Apoptotic-Like Cell Death during Plant Infection. PLoS Pathogens, 2011, 7, e1002185.	4.7	147
43	Independent genetic mechanisms mediate turgor generation and penetration peg formation during plant infection in the rice blast fungus. Molecular Microbiology, 2004, 53, 1695-1707.	2.5	146
44	<i>N</i> -Glycosylation of Effector Proteins by an α-1,3-Mannosyltransferase Is Required for the Rice Blast Fungus to Evade Host Innate Immunity Â. Plant Cell, 2014, 26, 1360-1376.	6.6	146
45	Cell Cycle–Mediated Regulation of Plant Infection by the Rice Blast Fungus. Plant Cell, 2010, 22, 497-507.	6.6	144
46	Identification of Pathogenicity Mutants of the Rice Blast Fungus Magnaporthe grisea by Insertional Mutagenesis. Molecular Plant-Microbe Interactions, 1999, 12, 129-142.	2.6	143
47	CRISPR-Cas9 ribonucleoprotein-mediated co-editing and counterselection in the rice blast fungus. Scientific Reports, 2018, 8, 14355.	3.3	136
48	Hook is an adapter that coordinates kinesin-3 and dynein cargo attachment on early endosomes. Journal of Cell Biology, 2014, 204, 989-1007.	5.2	135
49	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	2.1	133
50	An NADPH-dependent genetic switch regulates plant infection by the rice blast fungus. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21902-21907.	7.1	130
51	Karyotypic Variation within Clonal Lineages of the Rice Blast Fungus, <i>Magnaporthe grisea</i> . Applied and Environmental Microbiology, 1993, 59, 585-593.	3.1	128
52	Gene transfer into the fungi. Fungal Biology Reviews, 2011, 25, 98-110.	4.7	127
53	Nitrogen starvation of the rice blast fungusMagnaporthe griseamay act as an environmental cue for disease symptom expression. Physiological and Molecular Plant Pathology, 1997, 50, 179-195.	2.5	120
54	Investigating the cell biology of plant infection by the rice blast fungus Magnaporthe oryzae. Current Opinion in Microbiology, 2016, 34, 147-153.	5.1	117

#	Article	IF	CITATIONS
55	MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Plant Cell, 1996, 8, 985.	6.6	114
56	Realâ€ŧime PCR quantification and liveâ€cell imaging of endophytic colonization of barley (<i>Hordeum) Tj ETQq0 2009, 182, 213-228.</i>	0 0 rgBT 7.3	/Overlock 1 112
57	Genomics of Phytopathogenic Fungi and the Development of Bioinformatic Resources. Molecular Plant-Microbe Interactions, 2002, 15, 421-427.	2.6	110
58	Insights from Sequencing Fungal and Oomycete Genomes: What Can We Learn about Plant Disease and the Evolution of Pathogenicity?. Plant Cell, 2007, 19, 3318-3326.	6.6	110
59	Complementation of the Mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. EMBO Journal, 1998, 17, 3838-3849.	7.8	102
60	Spatial Uncoupling of Mitosis and Cytokinesis during Appressorium-Mediated Plant Infection by the Rice Blast Fungus <i>Magnaporthe oryzae</i> Â. Plant Cell, 2010, 22, 2417-2428.	6.6	100
61	Generic names in Magnaporthales. IMA Fungus, 2016, 7, 155-159.	3.8	98
62	Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection byMagnaporthe grisea. Molecular Microbiology, 2006, 61, 46-60.	2.5	97
63	A P-type ATPase required for rice blast disease and induction of host resistance. Nature, 2006, 440, 535-539.	27.8	96
64	The molecular biology of appressorium turgor generation by the rice blast fungus Magnaporthe grisea. Biochemical Society Transactions, 2005, 33, 384-388.	3.4	95
65	Rice blast infection of Brachypodium distachyon as a model system to study dynamic host/pathogen interactions. Nature Protocols, 2008, 3, 435-445.	12.0	95
66	Comparative genome analysis across a kingdom of eukaryotic organisms: Specialization and diversification in the Fungi. Genome Research, 2007, 17, 1809-1822.	5.5	94
67	Infection-related development in the rice blast fungus Magnaporthe grisea. Current Opinion in Microbiology, 1998, 1, 693-697.	5.1	93
68	PDE1 Encodes a P-Type ATPase Involved in Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 2001, 13, 1987-2004.	6.6	92
69	A Fungal Metallothionein Is Required for Pathogenicity of Magnaporthe grisea. Plant Cell, 2004, 16, 1575-1588.	6.6	91
70	Building filaments in the air: aerial morphogenesis in bacteria and fungi. Current Opinion in Microbiology, 2004, 7, 594-601.	5.1	91
71	The vacuole as central element of the lytic system and sink for lipid droplets in maturing appressoria ofMagnaporthe grisea. Protoplasma, 2001, 216, 101-112.	2.1	89
72	MoSnt2-dependent deacetylation of histone H3 mediates MoTor-dependent autophagy and plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Autophagy, 2018, 14, 1543-1561.	9.1	89

#	Article	IF	CITATIONS
73	A sensor kinase controls turgor-driven plant infection by the rice blast fungus. Nature, 2019, 574, 423-427.	27.8	87
74	Long-distance endosome trafficking drives fungal effector production during plant infection. Nature Communications, 2014, 5, 5097.	12.8	86
75	Horizontal gene transfer in osmotrophs: playing with public goods. Nature Reviews Microbiology, 2013, 11, 720-727.	28.6	85
76	The role of glycerol in the pathogenic lifestyle of the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 1008-1016.	3.8	84
77	Septin-Dependent Assembly of the Exocyst Is Essential for Plant Infection by <i>Magnaporthe oryzae</i> . Plant Cell, 2015, 27, 3277-3289.	6.6	79
78	Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2016, 90, 61-68.	2.1	76
79	Genomics of parasitic and symbiotic fungi. Current Opinion in Microbiology, 2002, 5, 513-519.	5.1	72
80	Magnaporthe grisea interactions with the model grass Brachypodium distachyon closely resemble those with rice (Oryza sativa). Molecular Plant Pathology, 2004, 5, 253-265.	4.2	72
81	Magnaporthe oryzae Populations Adapted to Finger Millet and Rice Exhibit Distinctive Patterns of Genetic Diversity, Sexuality and Host Interaction. Molecular Biotechnology, 2012, 50, 145-158.	2.4	72
82	Regulation of the MPG1 Hydrophobin Gene in the Rice Blast Fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 2002, 15, 1253-1267.	2.6	70
83	Functional genomics of plant–pathogen interactions. New Phytologist, 2003, 159, 1-4.	7.3	69
84	Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in Fusarium graminearum. Scientific Reports, 2017, 7, 11062.	3.3	69
85	Two Novel Transcriptional Regulators Are Essential for Infection-related Morphogenesis and Pathogenicity of the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2011, 7, e1002385.	4.7	68
86	Cellular differentiation and host invasion by the rice blast fungus Magnaporthe grisea. Current Opinion in Microbiology, 2007, 10, 339-345.	5.1	62
87	A sterol 14α-demethylase is required for conidiation, virulence and for mediating sensitivity to sterol demethylation inhibitors by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2011, 48, 144-153.	2.1	59
88	Two independent S-phase checkpoints regulate appressorium-mediated plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E237-E244.	7.1	57
89	Tpc1 is an important Zn(II)2Cys6 transcriptional regulator required for polarized growth and virulence in the rice blast fungus. PLoS Pathogens, 2017, 13, e1006516.	4.7	56
90	Coming up for air and sporulation. Nature, 1999, 398, 295-296.	27.8	55

#	Article	lF	CITATIONS
91	Glycogen Metabolic Genes Are Involved in Trehalose-6-Phosphate Synthase-Mediated Regulation of Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS Pathogens, 2013, 9, e1003604.	4.7	54
92	Living the Sweet Life: How Does a Plant Pathogenic Fungus Acquire Sugar from Plants?. PLoS Biology, 2010, 8, e1000308.	5.6	52
93	The βâ€1,3â€glucanosyltransferases (Gels) affect the structure of the rice blast fungal cell wall during appressoriumâ€mediated plant infection. Cellular Microbiology, 2017, 19, e12659.	2.1	51
94	Structure-Function Analysis of a CVNH-LysM Lectin Expressed during Plant Infection by the Rice Blast Fungus Magnaporthe oryzae. Structure, 2011, 19, 662-674.	3.3	47
95	Four conserved intramolecular disulphide linkages are required for secretion and cell wall localization of a hydrophobin during fungal morphogenesis. Molecular Microbiology, 2005, 56, 117-125.	2.5	44
96	Discovery of broad-spectrum fungicides that block septin-dependent infection processes of pathogenic fungi. Nature Microbiology, 2020, 5, 1565-1575.	13.3	44
97	Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nature Microbiology, 2021, 6, 1383-1397.	13.3	44
98	The emerging role of autophagy in plant pathogen attack and host defence. Current Opinion in Plant Biology, 2009, 12, 444-450.	7.1	43
99	Appressoria. Current Biology, 2019, 29, R144-R146.	3.9	43
100	The MET13 Methylenetetrahydrofolate Reductase Gene Is Essential for Infection-Related Morphogenesis in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2013, 8, e76914.	2.5	43
101	Fungal biology: Growing into the air. Current Biology, 1997, 7, R78-R81.	3.9	42
102	Identification of three ubiquitin genes of the rice blast fungus Magnaporthe grisea , one of which is highly expressed during initial stages of plant colonisation. Current Genetics, 1998, 33, 352-361.	1.7	42
103	MoRic8 Is a Novel Component of G-Protein Signaling During Plant Infection by the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 317-331.	2.6	42
104	<i>Pyricularia graminisâ€ŧritici </i> is not the correct species name for the wheat blast fungus: response to Ceresini <i>etÂal</i> . (MPP 20:2). Molecular Plant Pathology, 2019, 20, 173-179.	4.2	42
105	Genetics and genomics of the rice blast fungus magnaporthe grisea: Developing an experimental model for understanding fungal diseases of cereals. Advances in Botanical Research, 2001, 34, 263-287.	1.1	41
106	Use of a Substrate/Alliinase Combination To Generate Antifungal Activity in Situ. Journal of Agricultural and Food Chemistry, 2005, 53, 574-580.	5.2	41
107	Pulsed field gel electrophoresis reveals chromosome length differences between strains of Cladosporium fulvum (syn. Fulvia fulva). Molecular Genetics and Genomics, 1991, 229, 267-272.	2.4	40
108	Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2021, 154, 103562.	2.1	40

#	Article	IF	CITATIONS
109	New and Improved Techniques for the Study of Pathogenic Fungi. Trends in Microbiology, 2016, 24, 35-50.	7.7	39
110	<i>ZNF1</i> Encodes a Putative C2H2 Zinc-Finger Protein Essential for Appressorium Differentiation by the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2016, 29, 22-35.	2.6	38
111	Fungal physiology – a future perspective. Microbiology (United Kingdom), 2009, 155, 3810-3815.	1.8	37
112	A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 125-131.	2.1	37
113	Environment-dependent fitness gains can be driven by horizontal gene transfer of transporter-encoding genes. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5613-5622.	7.1	37
114	Comparative genomic analysis of phytopathogenic fungi using expressed sequence tag (EST) collections. Molecular Plant Pathology, 2006, 7, 61-70.	4.2	36
115	Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology (United Kingdom), 2002, 148, 1263-1279.	1.8	36
116	RNA Interference of Endochitinases in the Sugarcane Endophyte Trichoderma virens 223 Reduces Its Fitness as a Biocontrol Agent of Pineapple Disease. PLoS ONE, 2012, 7, e47888.	2.5	36
117	Characterization of <i>MoLDB1</i> Required for Vegetative Growth, Infection-Related Morphogenesis, and Pathogenicity in the Rice Blast Fungus <i>Magnaporthe oryzae</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1260-1274.	2.6	35
118	Protein kinase <scp>C</scp> is essential for viability of the rice blast fungus <scp><i>M</i></scp> <i>agnaporthe oryzae</i> . Molecular Microbiology, 2015, 98, 403-419.	2.5	35
119	A gene locus for targeted ectopic gene integration in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 118-124.	2.1	35
120	Infection-Associated Nuclear Degeneration in the Rice Blast Fungus Magnaporthe oryzae Requires Non-Selective Macro-Autophagy. PLoS ONE, 2012, 7, e33270.	2.5	33
121	e-Fungi: a data resource for comparative analysis of fungal genomes. BMC Genomics, 2007, 8, 426.	2.8	32
122	An Immune-Responsive Cytoskeletal-Plasma Membrane Feedback Loop in Plants. Current Biology, 2018, 28, 2136-2144.e7.	3.9	32
123	Comparative Genome Analysis Reveals an Absence of Leucine-Rich Repeat Pattern-Recognition Receptor Proteins in the Kingdom Fungi. PLoS ONE, 2010, 5, e12725.	2.5	31
124	Septins Focus Cellular Growth for Host Infection by Pathogenic Fungi. Frontiers in Cell and Developmental Biology, 2017, 5, 33.	3.7	31
125	Saprotrophic competitiveness and biocontrol fitness of a genetically modified strain of the plant-growth-promoting fungus Trichoderma hamatum GD12. Microbiology (United Kingdom), 2012, 158, 84-97.	1.8	29
126	Osmotrophy. Current Biology, 2018, 28, R1179-R1180.	3.9	29

#	Article	IF	CITATIONS
127	Plant health emergencies demand open science: Tackling a cereal killer on the run. PLoS Biology, 2019, 17, e3000302.	5.6	28
128	From appressorium to transpressorium—Defining the morphogenetic basis of host cell invasion by the rice blast fungus. PLoS Pathogens, 2021, 17, e1009779.	4.7	28
129	Aerial Morphogenesis: Enter the Chaplins. Current Biology, 2003, 13, R696-R698.	3.9	27
130	The biology of blast: Understanding how Magnaporthe oryzae invades rice plants. Fungal Biology Reviews, 2011, 25, 61-67.	4.7	26
131	FAR1 and FAR2 Regulate the Expression of Genes Associated with Lipid Metabolism in the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e99760.	2.5	26
132	The Influence of Genotype and Environment on the Physiological and Metabolic Diversity ofFusarium compactum. Fungal Genetics and Biology, 1996, 20, 254-267.	2.1	25
133	Genome-Wide Association Mapping of Rice Resistance Genes Against <i>Magnaporthe oryzae</i> Isolates from Four African Countries. Phytopathology, 2016, 106, 1359-1365.	2.2	25
134	Stage-specific cellular localisation of two hydrophobins during plant infection by the pathogenic fungus Cladosporium fulvum. Fungal Genetics and Biology, 2004, 41, 624-634.	2.1	24
135	Autophagic Cell Death and its Importance for Fungal Developmental Biology and Pathogenesis. Autophagy, 2007, 3, 126-127.	9.1	23
136	Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in <i>Magnaporthe oryzae</i> . Genetics, 2019, 211, 151-167.	2.9	23
137	Diploid construction by protoplast fusion in Fulvia fulva (syn. Cladosporium fulvum): genetic analysis of an imperfect fungal plant pathogen. Current Genetics, 1988, 14, 567-572.	1.7	22
138	Complementation of the Magnaporthe grisea ΔcpkA Mutation by the Blumeria graminis PKA-c Gene: Functional Genetic Analysis of an Obligate Plant Pathogen. Molecular Plant-Microbe Interactions, 2001, 14, 1368-1375.	2.6	22
139	The influence of genotypic variation on metabolite diversity in populations of two endophytic fungal species. Fungal Genetics and Biology, 2004, 41, 721-734.	2.1	22
140	Leucine biosynthesis is required for infection-related morphogenesis and pathogenicity in the rice blast fungus Magnaporthe oryzae. Current Genetics, 2020, 66, 155-171.	1.7	22
141	Cell cycle-dependent regulation of plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> . Communicative and Integrative Biology, 2017, 10, e1372067.	1.4	21
142	Chitosan inhibits septinâ€mediated plant infection by the rice blast fungus <i>Magnaporthe oryzae</i> in a protein kinase C and Nox1 NADPH oxidaseâ€dependent manner. New Phytologist, 2021, 230, 1578-1593.	7.3	21
143	Harbouring public good mutants within a pathogen population can increase both fitness and virulence. ELife, 2016, 5, .	6.0	21
144	Identification and characterization ofapf1â^'in a non-pathogenic mutant of the rice blast fungusMagnaporthe griseawhich is unable to differentiate appressoria. Physiological and Molecular Plant Pathology, 1998, 53, 239-251.	2.5	20

#	Article	IF	CITATIONS
145	Characterisation of Four LIM Protein-Encoding Genes Involved in Infection-Related Development and Pathogenicity by the Rice Blast Fungus Magnaporthe oryzae. PLoS ONE, 2014, 9, e88246.	2.5	20
146	Exploitation of sulfonylurea resistance marker and non-homologous end joining mutants for functional analysis in Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 102-109.	2.1	20
147	A bioinformatic tool for analysis of EST transcript abundance during infection-related development by Magnaporthe grisea. Molecular Plant Pathology, 2005, 6, 503-512.	4.2	19
148	Moving Toward a Systems Biology Approach to the Study of Fungal Pathogenesis in the Rice Blast Fungus Magnaporthe grisea. Advances in Applied Microbiology, 2005, 57, 177-215.	2.4	18
149	The glycogen synthase kinase MoGsk1, regulated by Mps1 MAP kinase, is required for fungal development and pathogenicity in Magnaporthe oryzae. Scientific Reports, 2017, 7, 945.	3.3	18
150	Protein glycosylation during infection by plant pathogenic fungi. New Phytologist, 2021, 230, 1329-1335.	7.3	18
151	Structural and functional analysis of an oligomeric hydrophobin gene from Claviceps purpurea. Molecular Plant Pathology, 2003, 4, 31-41.	4.2	17
152	Plant Parasitic Oomycetes Such as <i>Phytophthora</i> Species Contain Genes Derived from Three Eukaryotic Lineages. Plant Signaling and Behavior, 2007, 2, 112-114.	2.4	17
153	A rapid method for ploidy determination in fungal cells. Current Genetics, 1988, 14, 51-52.	1.7	16
154	Immunofluorescence microscopy and immunogold EM for investigating fungal infection of plants. Nature Protocols, 2006, 1, 2506-2511.	12.0	15
155	Genomes, free radicals and plant cell invasion: recent developments in plant pathogenic fungi. Current Opinion in Plant Biology, 2008, 11, 367-372.	7.1	15
156	Moving targets: rapid evolution of oomycete effectors. Trends in Microbiology, 2008, 16, 507-510.	7.7	15
157	Plant Immunity: A Little Help from Fungal Friends. Current Biology, 2015, 25, R1074-R1076.	3.9	15
158	Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. Plant Disease, 2021, 105, 2749-2770.	1.4	15
159	mRNA translocation and microtubules: insect ovary models. Trends in Cell Biology, 1995, 5, 361-365.	7.9	14
160	Genotyping-by-Sequencing-Based Genetic Analysis of African Rice Cultivars and Association Mapping of Blast Resistance Genes Against <i>Magnaporthe oryzae</i> Populations in Africa. Phytopathology, 2017, 107, 1039-1046.	2.2	14
161	Fungal genomics goes industrial. Nature Biotechnology, 2007, 25, 542-543.	17.5	13
162	The cyclin dependent kinase subunit Cks1 is required for infectionâ€associated development of the rice blast fungus <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 3959-3981.	3.8	13

#	Article	IF	CITATIONS
163	Raiding the sweet shop. Nature, 2010, 468, 510-511.	27.8	12
164	Fungal pathogenesis: Combatting the oxidative burst. Nature Microbiology, 2017, 2, 17095.	13.3	12
165	Poly(A) mRNA is attached to insect ovarian microtubules in vivo in a nucleotide-sensitive manner. Cytoskeleton, 1999, 43, 159-166.	4.4	11
166	PLANT BIOPHYSICS:Forcible Entry. Science, 1999, 285, 1860-1861.	12.6	11
167	A hybrid machine model of rice blast fungus, Magnaporthe grisea. BioSystems, 2003, 68, 223-228.	2.0	11
168	The sorting nexin FgAtg20 is involved in the Cvt pathway, nonâ€selective macroautophagy, pexophagy and pathogenesis in Fusarium graminearum. Cellular Microbiology, 2020, 22, e13208.	2.1	11
169	Increase in ploidy in yeasts as a response to stressing media. Applied Microbiology and Biotechnology, 1989, 32, 167-169.	3.6	10
170	A Relational Database for the Discovery of Genes Encoding Amino Acid Biosynthetic Enzymes in Pathogenic Fungi. Comparative and Functional Genomics, 2003, 4, 4-15.	2.0	9
171	Construction and high-throughput phenotypic screening of Zymoseptoria tritici over-expression strains. Fungal Genetics and Biology, 2015, 79, 110-117.	2.1	9
172	High level expression of theMagnaporthe griseamitochondrial small sub-unit rRNA during rice leaf colonization and rapid down-regulation prior to the onset of disease symptoms. Physiological and Molecular Plant Pathology, 1998, 52, 335-352.	2.5	8
173	MAP Kinase and Protein Kinase A: Dependent Mobilization of Triacylglycerol and Glycogen during Appressorium Turgor Generation by Magnaporthe grisea. Plant Cell, 2000, 12, 1703.	6.6	8
174	Silencing the crowd: highâ€ŧhroughput functional genomics in <i>Magnaporthe oryzae</i> . Molecular Microbiology, 2008, 68, 1341-1344.	2.5	8
175	Deadly special deliveries. Nature, 2007, 450, 41-43.	27.8	7
176	The Biology of Invasive Growth by the Rice Blast Fungus Magnaporthe oryzae. Methods in Molecular Biology, 2021, 2356, 19-40.	0.9	7
177	Taming a wild beast: Developing molecular tools and new methods to understand the biology of Zymoseptoria tritici. Fungal Genetics and Biology, 2015, 79, 193-195.	2.1	5
178	FgRIC8 is involved in regulating vegetative growth, conidiation, deoxynivalenol production and virulence in Fusarium graminearum. Fungal Genetics and Biology, 2015, 83, 92-102.	2.1	4
179	Genome Dynamics and Pathotype Evolution in the Rice Blast Fungus. Current Plant Science and Biotechnology in Agriculture, 1993, , 299-311.	0.0	4
180	Functional Genomic Analysis of the Rice Blast Fungus Magnaporthe grisea. Applied Mycology and Biotechnology, 2004, , 331-352.	0.3	3

#	Article	IF	CITATIONS
181	4 Septation and Cytokinesis in Pathogenic Fungi. , 2016, , 67-79.		3
182	Fungal Hydrophobins. , 2001, , 145-159.		3
183	Independent Signaling Pathways Regulate Cellular Turgor during Hyperosmotic Stress and Appressorium-Mediated Plant Infection by Magnaporthe grisea. Plant Cell, 1999, 11, 2045.	6.6	2
184	Taming the uncultured. Nature Biotechnology, 2000, 18, 146-147.	17.5	2
185	PDE1 Encodes a P-Type ATPase Involved in Appressorium-Mediated Plant Infection by the Rice Blast Fungus Magnaporthe grisea. Plant Cell, 2001, 13, 1987.	6.6	2
186	Getting a grip on blast. Nature Microbiology, 2020, 5, 1457-1458.	13.3	2
187	A putative PKA phosphorylation site S227 in MoSom1 is essential for infectionâ€related morphogenesis and pathogenicity in Magnaporthe oryzae. Cellular Microbiology, 2021, 23, e13370.	2.1	2
188	Foliar Diseases and the Associated Fungi in Rice Cultivated in Kenya. Plants, 2022, 11, 1264.	3.5	2
189	Let there be blight: functional analysis of virulence in Phytophthora infestans. Molecular Microbiology, 2004, 51, 913-915.	2.5	1
190	A Methodology for Comparative Functional Genomics. Journal of Integrative Bioinformatics, 2007, 4, 112-122.	1.5	1
191	Regulating morphogenetic transitions during development and pathogenesis of microbial eukaryotes. Current Opinion in Microbiology, 2012, 15, 633-636.	5.1	1
192	Molecular Variability Studies of Magnaporthe grisea and Their Application in Disease Control. , 2002, , 153-169.		1
193	Functional genomics of plant infection by the rice blast fungus Magnaporthe grisea. , 0, , 227-254.		0
194	Unwrapping the <i>Laccaria</i> genome. New Phytologist, 2008, 180, 259-260.	7.3	0
195	Nick Talbot. Current Biology, 2016, 26, R1122-R1124.	3.9	0
196	Molecular Interactions of Phytopathogens and Hosts. , 2004, , 385-403.		0
197	Cycling in synchrony. ELife, 2019, 8, .	6.0	ο