Victor R Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686421/publications.pdf

Version: 2024-02-01

516710 501196 1,024 61 16 28 h-index citations g-index papers 63 63 63 602 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Collaborative Strategic Board Games as a Site for Distributed Computational Thinking. International Journal of Game-Based Learning, $2011, 1, 65-81$.	1.4	139
2	Adaptations and Continuities in the Use and Design of Visual Representations in US Middle School Science Textbooks. International Journal of Science Education, 2010, 32, 1099-1126.	1.9	80
3	Framing in cognitive clinical interviews about intuitive science knowledge: Dynamic student understandings of the discourse interaction. Science Education, 2012, 96, 573-599.	3.0	58
4	Some assembly required: How scientific explanations are constructed during clinical interviews. Journal of Research in Science Teaching, 2012, 49, 166-198.	3.3	52
5	In Pursuit of Consensus: Disagreement and legitimization during small-group argumentation. International Journal of Science Education, 2012, 34, 1857-1882.	1.9	45
6	Appropriating Quantified Self Technologies to Support Elementary Statistical Teaching and Learning. IEEE Transactions on Learning Technologies, 2016, 9, 354-365.	3.2	44
7	Integrating physical activity data technologies into elementary school classrooms. Educational Technology Research and Development, 2011, 59, 865-884.	2.8	38
8	A Call for a Humanistic Stance Toward K–12 Data Science Education. Educational Researcher, 2021, 50, 664-672.	5.4	35
9	Quantified recess., 2013,,.		33
10	An Emerging Technology Report on Computational Toys in Early Childhood. Technology, Knowledge and Learning, 2020, 25, 213-224.	4.9	32
10		0.6	30
	and Learning, 2020, 25, 213-224. An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical		
11	and Learning, 2020, 25, 213-224. An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical Learning, 2010, 15, 167-189. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace	0.6	30
11 12	and Learning, 2020, 25, 213-224. An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical Learning, 2010, 15, 167-189. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 2019, 59, 101789. Developing a kindergarten computational thinking assessment using evidence-centered design: the	0.6	30 27
11 12 13	and Learning, 2020, 25, 213-224. An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical Learning, 2010, 15, 167-189. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 2019, 59, 101789. Developing a kindergarten computational thinking assessment using evidence-centered design: the case of algorithmic thinking. Computer Science Education, 2021, 31, 117-140. Digital Physical Activity Data Collection and Use by Endurance Runners and Distance Cyclists.	0.6 2.9 3.7	30 27 27
11 12 13	and Learning, 2020, 25, 213-224. An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical Learning, 2010, 15, 167-189. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 2019, 59, 101789. Developing a kindergarten computational thinking assessment using evidence-centered design: the case of algorithmic thinking. Computer Science Education, 2021, 31, 117-140. Digital Physical Activity Data Collection and Use by Endurance Runners and Distance Cyclists. Technology, Knowledge and Learning, 2013, 18, 39-63.	0.6 2.9 3.7 4.9	30 27 27 24
11 12 13 14	An Exploration into How Physical Activity Data-Recording Devices Could be Used in Computer-Supported Data Investigations. International Journal of Computers for Mathematical Learning, 2010, 15, 167-189. A wearables-based approach to detect and identify momentary engagement in afterschool Makerspace programs. Contemporary Educational Psychology, 2019, 59, 101789. Developing a kindergarten computational thinking assessment using evidence-centered design: the case of algorithmic thinking. Computer Science Education, 2021, 31, 117-140. Digital Physical Activity Data Collection and Use by Endurance Runners and Distance Cyclists. Technology, Knowledge and Learning, 2013, 18, 39-63. How different variants of orbit diagrams influence student explanations of the seasons. Science Education, 2010, 94, 985-1007. Let's Get Physical: K-12 Students Using Wearable Devices to Obtain and Learn About Data from Physical	0.6 2.9 3.7 4.9	30 27 27 24 23

#	Article	IF	Citations
19	The building blocks of coding: a comparison of early childhood coding toys. Information and Learning Science, 2019, 120, 505-518.	1.3	20
20	Paper Circuits: A Tangible, Low Threshold, Low Cost Entry to Computational Thinking. TechTrends, 2018, 62, 197-203.	2.3	16
21	Lessons learned from an initial effort to bring a quantified self "meetup" experience to a new demographic. , 2014, , .		15
22	Children caring for robots: Expanding computational thinking frameworks to include a technological ethic of care. International Journal of Child-Computer Interaction, 2022, 33, 100491.	3.5	15
23	Taking data feminism to school: A synthesis and review of preâ€collegiate data science education projects. British Journal of Educational Technology, 2022, 53, 1096-1113.	6.3	14
24	Kindergarten students' mathematics knowledge at work: the mathematics for programming robot toys. Mathematical Thinking and Learning, 2023, 25, 380-408.	1.2	13
25	Combining High-Speed Cameras and Stop-Motion Animation Software to Support Students' Modeling of Human Body Movement. Journal of Science Education and Technology, 2015, 24, 178-191.	3.9	12
26	Measuring Electrodermal Activity to Capture Engagement in an Afterschool Maker Program., 2016,,.		12
27	On researching activity tracking to support learning: a retrospective. Information and Learning Science, 2019, 120, 133-154.	1.3	11
28	Remembering What Produced the Data: Individual and Social Reconstruction in the Context of a <i>Quantified Self </i> Elementary Data and Statistics Unit. Cognition and Instruction, 2021, 39, 367-408.	2.9	11
29	How young children engage in and shift between reference frames when playing with coding toys. International Journal of Child-Computer Interaction, 2021, 28, 100250.	3.5	10
30	The Role of School District Science Coordinators in the District-Wide Appropriation of an Online Resource Discovery and Sharing Tool for Teachers. Journal of Science Education and Technology, 2014, 23, 309-323.	3.9	8
31	Instructional support for learning with agent-based simulations: A tale of vicarious and guided exploration learning approaches. Computers and Education, 2019, 142, 103644.	8.3	8
32	A Broad View of Wearables as Learning Technologies: Current and Emerging Applications. Smart Computing and Intelligence, 2019, , 113-133.	0.5	8
33	A rubric for describing competences in the areas of circuitry, computation, and crafting after a course using e-textiles. International Journal of Information and Learning Technology, 2017, 34, 372-384.	2.3	8
34	Introducing Coding through Tabletop Board Games and Their Digital Instantiations across Elementary Classrooms and School Libraries. , 2020, , .		8
35	Supporting Interactive Youth Maker Programs in Public and School Libraries. , 2017, , .		7
36	Data science education across the disciplines: Underexamined opportunities for Kâ€12 innovation. British Journal of Educational Technology, 2022, 53, 1073-1079.	6.3	7

#	Article	IF	Citations
37	Youth Concerns and Responses to Self-Tracking Tools and Personal Informatics Systems. , 2019, , .		6
38	From Wearing to Wondering. Advances in Educational Technologies and Instructional Design Book Series, $2017, 129$.	0.2	6
39	Identifying the Content, Lesson Structure, and Data Use Within Pre-collegiate Data Science Curricula. Journal of Science Education and Technology, 2022, 31, 81-98.	3.9	6
40	Knowing and Learning with Technology (and on Wheels!): An Introduction to the Special Issue. Technology, Knowledge and Learning, 2013, 18, 1-8.	4.9	5
41	An Expansively-framed Unplugged Weaving Sequence Intended to Bear Computational Fruit of the Loom. , $2019, , .$		5
42	Youth engagement during making: using electrodermal activity data and first-person video to generate evidence-based conjectures. Information and Learning Science, 2021, 12, 270-291.	1.3	5
43	Coding Toys in Kindergarten. Teaching Children Mathematics, 2019, 25, 314-317.	0.2	5
44	Personal Analytics Explorations to Support Youth Learning. Advances in Educational Technologies and Instructional Design Book Series, 2018, , 145-163.	0.2	4
45	Exploring Measurement through Coding: Children's Conceptions of a Dynamic Linear Unit with Robot Coding Toys. Education Sciences, 2022, 12, 143.	2.6	4
46	Students' Digital Photography Behaviors during a Multiday Environmental Science Field Trip and Their Recollections of Photographed Science Content. Education Research International, 2014, 2014, 1-11.	1.1	3
47	Tabletop games designed to promote computational thinking. Computer Science Education, 2022, 32, 449-475.	3.7	3
48	It's More Than Just Technology Adoption: Understanding Variations in Teachers' Use of an Online Planning Tool. TechTrends, 2021, 65, 269-277.	2.3	3
49	Conceptual Dynamics in Clinical Interviews. , 2007, , .		2
50	How Time Gets Used in Afterschool Maker Programs. , 2017, , .		2
51	Measuring Electrodermal Activity in an Afterschool Maker Program to Detect Youth Engagement. Advances in Educational Technologies and Instructional Design Book Series, 2020, , 128-150.	0.2	2
52	Material pets, virtual spaces, isolated designers. , 2012, , .		1
53	Reconstructing the Influences on and Focus of the Learning Sciences from the Field's Published Conference Proceedings., 0,, 105-125.		1
54	Let's cut to commercial: where research, evaluation, and design of learning games should go next. Educational Technology Research and Development, 2021, 69, 145-148.	2.8	1

VICTOR R LEE

#	Article	IF	Citations
55	Current Approaches in Teacher Learning on Digital Social Platforms. Advances in Mobile and Distance Learning Book Series, 2021, , 624-641.	0.5	1
56	From Wearing to Wondering. , 2018, , 810-832.		1
57	Collaborative Strategic Board Games as a Site for Distributed Computational Thinking. , 2013, , 285-301.		1
58	Measuring Electrodermal Activity in an Afterschool Maker Program to Detect Youth Engagement. , 2022, , $515-536$.		1
59	Conceptual Dynamics of Student Reasoning during Interviews Involving Discrepant Embodied Experiences. Journal for STEM Education Research, 2019, 2, 172-200.	1.5	O
60	The picture of smartphones at school is not a dire one and the picture of student competence is a bright one. Learning, Culture and Social Interaction, 2019, 21, 293-295.	1.8	0
61	Supporting Complex Multimodal Expression Around Representations of Data: Experience Matters. Advances in STEM Education, 2019, , 217-231.	0.5	0