Junqing Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/686413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microfiber-Knot-Resonator-Induced Energy Transferring From Vector Noise-Like Pulse to Scalar Soliton Rains in an Erbium-Doped Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2021, 27, 1-6.	1.9	6
2	Over 10  W linearly polarized supercontinuum directly produced in an erbium-doped fiber MOPA seeded with stretched soliton. Applied Optics, 2021, 60, 257.	0.9	5
3	10 µJ noise-like pulse generated from all fiberized Tm-doped fiber oscillator and amplifier. Optics Express, 2021, 29, 10172.	1.7	19
4	Nonlinear Absorbing-Loop Mirror Mode-Locked all-Polarization-Maintaining Yb-Doped Fiber Laser. IEEE Photonics Journal, 2021, 13, 1-5.	1.0	2
5	Local nonlinearity engineering of evanescent-field-interaction fiber devices embedding in black phosphorus quantum dots. Nanophotonics, 2021, 11, 87-100.	2.9	5
6	Determining and structuring ultrafast laser pulses: from direct optical tailoring to optomechanical coupling through engineering microfibers. , 2021, , .		0
7	Microfiber-Knot-Resonator-Induced Partial Elimination of Longitudinal Modes in Fiber Lasers for In-Tune-Switchable Nanosecond Pulse Generation. Journal of Lightwave Technology, 2020, 38, 875-880.	2.7	4
8	Nonlinear Absorbing-Loop Mirror in a Holmium-Doped Fiber Laser. Journal of Lightwave Technology, 2020, 38, 6069-6075.	2.7	27
9	Microfiber knot assisted soliton rains emission from square-wave-like pulse in an erbium-doped fiber laser. , 2020, , .		0
10	Frequency-comb-tailored soliton rains. , 2020, , .		0
11	Unusual Evolutions of Dissipative-Soliton-Resonance Pulses in an All-Normal Dispersion Fiber Laser. IEEE Photonics Journal, 2019, 11, 1-9.	1.0	12
12	Tunable and switchable harmonic h-shaped pulse generation in a 303  km ultralong mode-locked thulium-doped fiber laser. Photonics Research, 2019, 7, 332.	3.4	37
13	Dissipative soliton resonance and its depression into burst-like emission in a holmium-doped fiber laser with large normal dispersion. Optics Letters, 2019, 44, 2414.	1.7	36
14	Narrow-bandwidth h-shaped pulse generation and evolution in a net normal dispersion thulium-doped fiber laser. Optics Express, 2019, 27, 29770.	1.7	20
15	Continuous-Wave 3.1–3.6 μm Difference-Frequency Generation of Dual Wavelength-Tunable Fiber Sources in PPMgLN-Based Rapid-Tuning Design. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	1.9	9
16	Dual-Operation Regime Thulium-Doped Fiber Laser and Its Applications in Cascaded Raman Light and Supercontinuum Generation. IEEE Photonics Journal, 2018, 10, 1-9.	1.0	8
17	Clear plastic transmission laser welding using a metal absorber. Optics and Laser Technology, 2018, 105, 242-248.	2.2	28
18	A high strength magnesium alloy-based rotating mirror for an ultra-high speed camera. Optik, 2018, 157, 85-92.	1.4	7

JUNQING ZHAO

#	Article	IF	CITATIONS
19	Generation of pulse bundles in a self-mode-locked Tm-doped double-clad fiber laser. Optik, 2018, 154, 485-490.	1.4	8
20	Peak-Power-Clamped Passive Q-Switching of a Thulium/Holmium Co-Doped Fiber Laser. Journal of Lightwave Technology, 2018, 36, 4975-4980.	2.7	7
21	Cavity-birefringence-dependent h-shaped pulse generation in a thulium-holmium-doped fiber laser. Optics Letters, 2018, 43, 247.	1.7	49
22	Dissipative Soliton Resonances in a Mode-Locked Holmium-Doped Fiber Laser. IEEE Photonics Technology Letters, 2018, 30, 1699-1702.	1.3	23
23	Octave-spanning visible supercontinuum generation from an aluminum nitride single crystal pumped by a 355 nm nanosecond pulse. Chinese Optics Letters, 2018, 16, 043201.	1.3	1
24	70-W Graphene-Oxide Passively Q-Switched Thulium-Doped Double-Clad Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23, 13-19.	1.9	11
25	Silicon wafer directly used as an output coupler in Tm:YAP laser. , 2017, , .		0
26	Repetition-Rate-Switchable and Self-Mode-Locked Pulses Generation From a Gain-Switched Thulium-Doped Fiber Laser and Their Amplification Properties. IEEE Photonics Journal, 2017, 9, 1-10.	1.0	6
27	Absorption Measurement Errors in Single-Mode Fibers Resulting From Re-Emission of Radiation. IEEE Journal of Quantum Electronics, 2017, 53, 1-11.	1.0	6
28	1.04 km Ultra-long cladding-pumped thulium-doped fiber laser with large energy noise-like-toped dissipative soliton resonances. , 2017, , .		1
29	Isolator-Free Unidirectional Multiwavelength Tm-Doped Double-Clad Fiber Laser Based on Multimode Interference Effect. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	6
30	Mid-infrared Spectral Intensity Enhanced Supercontinuum Generation Based on Nanosecond Thulium-Doped Fiber Laser. IEEE Photonics Journal, 2016, 8, 1-10.	1.0	7
31	Scaling all-fiber mid-infrared supercontinuum up to 10  W-level based on thermal-spliced silica fiber and ZBLAN fiber. Photonics Research, 2016, 4, 135.	3.4	55
32	100 W dissipative soliton resonances from a thulium-doped double-clad all-fiber-format MOPA system. Optics Express, 2016, 24, 12072.	1.7	91
33	An Effective Thermal Splicing Method to Join Fluoride and Silica Fibers for a High Power Regime. Chinese Physics Letters, 2015, 32, 114206.	1.3	8
34	Fiber absorption measurement errors resulting from re-emission of radiation. , 2015, , .		2
35	Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 716.	0.9	29
36	Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Optics Express, 2014, 22, 11417.	1.7	186

Junqing Zhao

#	Article	IF	CITATIONS
37	Observation of multipulse bunches in a graphene oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Applied Physics B: Lasers and Optics, 2014, 116, 939-946.	1.1	14
38	Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion. Laser Physics Letters, 2014, 11, 025102.	0.6	32
39	High order harmonic mode-locking in an all-normal-dispersion Yb-doped fiber laser with a graphene oxide saturable absorber. Laser Physics, 2014, 24, 015001.	0.6	16
40	An Ytterbium-doped fiber laser with dark and Q-switched pulse generation using graphene-oxide as saturable absorber. Optics Communications, 2014, 312, 227-232.	1.0	44
41	Bright and Dark Square Pulses Generated From a Graphene-Oxide Mode-Locked Ytterbium-Doped Fiber Laser. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	26
42	Two different output states from an all-normal dispersion yetterbium-doped fiber laser using graphene-oxide as a saturable absorber. Laser Physics, 2014, 24, 065108.	0.6	0
43	An L-band graphene-oxide mode-locked fiber laser delivering bright and dark pulses. Laser Physics, 2013, 23, 075105.	0.6	32
44	Cladding-filled graphene in a photonic crystal fiber as a saturable absorber and its first application for ultrafast all-fiber laser. Optical Engineering, 2013, 52, 106105.	0.5	30
45	Double Cladding Seven-Core Photonic Crystal Fibers With Different GVD Properties and Fundamental Supermode Output. Journal of Lightwave Technology, 2013, 31, 3658-3662.	2.7	25
46	Observations of three types of pulses in an erbium-doped fiber laser by incorporating a graphene saturable absorber. Applied Optics, 2013, 52, 8465.	0.9	32
47	Passively harmonic mode locking in ytterbium-doped fiber laser with graphene oxide saturable absorber. Optical Engineering, 2013, 52, 126102.	0.5	12
48	Graphene-Oxide-Based Q-Switched Fiber Laser with Stable Five-Wavelength Operation. Chinese Physics Letters, 2012, 29, 114206.	1.3	24
49	Multi-wavelength graphene-based Q-switched erbium-doped fiber laser. Optical Engineering, 2012, 51, 074201.	0.5	8
50	Improved large-mode-area Bragg fiber. Chinese Optics Letters, 2011, 9, 060603-60605.	1.3	2
51	Polarization dependent visible supercontinuum generation in the nanoweb fiber. Optics Express, 2011, 19, 4985.	1.7	19
52	Q-Switched Thulium-Doped Domestic Silica Fiber Laser. Chinese Physics Letters, 2011, 28, 044206.	1.3	7
53	Fabrication of a 145-m long microstructured optical fiber taper and its supercontinuum generation. Optical Engineering, 2011, 50, 105003.	0.5	1