Rebeca Carballar-LejarazÃo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6864040/publications.pdf

Version: 2024-02-01

25 papers 752 citations

759233 12 h-index 24 g-index

26 all docs

26 docs citations

26 times ranked 957 citing authors

#	Article	IF	CITATIONS
1	Next-generation gene drive for population modification of the malaria vector mosquito, <i>Anopheles gambiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22805-22814.	7.1	157
2	Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics, 2017, 18, 512.	2.8	138
3	Experimental population modification of the malaria vector mosquito, Anopheles stephensi. PLoS Genetics, 2019, 15, e1008440.	3.5	101
4	Population modification of Anopheline species to control malaria transmission. Pathogens and Global Health, 2017, 111, 424-435.	2.3	68
5	Selection and evaluation of reference genes for qRT-PCR analysis in Euscaphis konishii Hayata based on transcriptome data. Plant Methods, 2018, 14, 42.	4.3	42
6	Population genomics in the arboviral vector <i>Aedes aegypti</i> reveals the genomic architecture and evolution of endogenous viral elements. Molecular Ecology, 2021, 30, 1594-1611.	3.9	37
7	Comparative transcriptome among Euscaphis konishii Hayata tissues and analysis of genes involved in flavonoid biosynthesis and accumulation. BMC Genomics, 2019, 20, 24.	2.8	29
8	Characterization of bacterial communities associated with the pinewood nematode insect vector Monochamus alternatus Hope and the host tree Pinus massoniana. BMC Genomics, 2020, 21, 337.	2.8	24
9	Exogenous <i>gypsy</i> insulator sequences modulate transgene expression in the malaria vector mosquito, <i>Anopheles stephensi</i> Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7176-7181.	7.1	22
10	Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Frontiers in Genetics, 2019, 10, 93.	2.3	21
11	Polymorphism analyses and protein modelling inform on functional specialization of PiwiÂclade genes in the arboviral vector Aedes albopictus. PLoS Neglected Tropical Diseases, 2019, 13, e0007919.	3.0	16
12	Global Governing Bodies: A Pathway for Gene Drive Governance for Vector Mosquito Control. American Journal of Tropical Medicine and Hygiene, 2020, 103, 976-985.	1.4	16
13	Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. Insect Biochemistry and Molecular Biology, 2022, 142, 103720.	2.7	15
14	Tracing temporal and geographic distribution of resistance to pyrethroids in the arboviral vector Aedes albopictus. PLoS Neglected Tropical Diseases, 2020, 14, e0008350.	3.0	13
15	Engineering of multiple trypsin/chymotrypsin sites in <scp>Cry3A</scp> to enhance its activity against <i>Monochamus alternatus</i> Hope larvae. Pest Management Science, 2020, 76, 3117-3126.	3.4	11
16	Digital droplet PCR and IDAA for the detection of CRISPR indel edits in the malaria species <i>Anopheles stephensi</i> . BioTechniques, 2020, 68, 172-179.	1.8	8
17	Bacillus thuringiensis toxins with nematocidal activity against the pinewood nematode Bursaphelenchus xylophilus. Journal of Invertebrate Pathology, 2022, 189, 107726.	3.2	8
18	Cas9-mediated maternal effect and derived resistance alleles in a gene-drive strain of the African malaria vector mosquito, <i>Anopheles gambiae</i>	2.9	8

#	Article	IF	CITATIONS
19	Identification and Characterization of Aminopeptidase-N as a Binding Protein for Cry3Aa in the Midgut of Monochamus alternatus (Coleoptera: Cerambycidae). Journal of Economic Entomology, 2020, 113, 2259-2268.	1.8	7
20	Proteolytic Activation of <i>Bacillus thuringiensis</i> Cry3Aa Toxin in the Red Palm Weevil (Coleoptera: Curculionidae). Journal of Economic Entomology, 2021, 114, 2406-2411.	1.8	3
21	Microinjection Method for Anopheles gambiae Embryos. Journal of Visualized Experiments, 2021, , .	0.3	2
22	Genetic diversity and population structure of <i>Euscaphis japonica</i> , a monotypic species. PeerJ, 2021, 9, e12024.	2.0	2
23	Characterization of Bacterial Communities Associated with Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) and its Host Phoenix sylvestris. Current Microbiology, 2020, 77, 3321-3329.	2.2	1
24	Digital-Droplet PCR to Detect Indels Mutations in Genetically Modified Anopheline Mosquito Populations. Journal of Visualized Experiments, 2021, , .	0.3	1
25	Small-Cage Laboratory Trials of Genetically-Engineered Anopheline Mosquitoes. Journal of Visualized Experiments, 2021, , .	0.3	0