Katharina Jähn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6864016/publications.pdf

Version: 2024-02-01

566801 433756 1,447 34 15 31 citations h-index g-index papers 39 39 39 2313 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Demonstration of osteocytic perilacunar/canalicular remodeling in mice during lactation. Journal of Bone and Mineral Research, 2012, 27, 1018-1029.	3.1	410
2	Isolation and culture of primary osteocytes from the long bones of skeletally mature and aged mice. BioTechniques, 2012, 52, 361-373.	0.8	168
3	\hat{l}^2 -aminoisobutyric Acid, l-BAIBA, Is a Muscle-Derived Osteocyte Survival Factor. Cell Reports, 2018, 22, 1531-1544.	2.9	131
4	Osteocytes Acidify Their Microenvironment in Response to PTHrP In Vitro and in Lactating Mice In Vivo. Journal of Bone and Mineral Research, 2017, 32, 1761-1772.	3.1	88
5	Crosstalk Between MLO‥4 Osteocytes and C2C12 Muscle Cells Is Mediated by the Wnt/βâ€Catenin Pathway. JBMR Plus, 2017, 1, 86-100.	1.3	83
6	Intramedullary Mg2Ag nails augment callus formation during fracture healing in mice. Acta Biomaterialia, 2016, 36, 350-360.	4.1	75
7	Muscle–Bone Crosstalk: Emerging Opportunities for Novel Therapeutic Approaches to Treat Musculoskeletal Pathologies. Biomedicines, 2017, 5, 62.	1.4	72
8	Severely Impaired Bone Material Quality in Chihuahua Zebrafish Resembles Classical Dominant Human Osteogenesis Imperfecta. Journal of Bone and Mineral Research, 2018, 33, 1489-1499.	3.1	61
9	Physiological and pathological osteocytic osteolysis. Journal of Musculoskeletal Neuronal Interactions, 2018, 18, 292-303.	0.1	61
10	Early bone tissue aging in human auditory ossicles is accompanied by excessive hypermineralization, osteocyte death and micropetrosis. Scientific Reports, 2018, 8, 1920.	1.6	40
11	TG-interacting factor 1 (Tgif1)-deficiency attenuates bone remodeling and blunts the anabolic response to parathyroid hormone. Nature Communications, 2019, 10, 1354.	5.8	28
12	Individuals with type 2 diabetes mellitus show dimorphic and heterogeneous patterns of loss in femoral bone quality. Bone, 2020, 140, 115556.	1.4	28
13	Elevated Bone Hardness Under Denosumab Treatment, With Persisting Lower Osteocyte Viability During Discontinuation. Frontiers in Endocrinology, 2020, 11, 250.	1.5	22
14	Perturbed bone composition and integrity with disorganized osteoblast function in zinc receptor/Gpr39â€deficient mice. FASEB Journal, 2018, 32, 2507-2518.	0.2	20
15	Versatile optical manipulation system for inspection, laser processing, and isolation of individual living cells. Review of Scientific Instruments, 2006, 77, 063116.	0.6	18
16	TGF <i>\hat{I}^2</i> ₃ and loading increases osteocyte survival in human cancellous bone cultured <i>ex vivo</i> . Cell Biochemistry and Function, 2009, 27, 23-29.	1.4	18
17	Hypoxia mediates osteocyte ORP150 expression and cell death in vitro. Molecular Medicine Reports, 2016, 14, 4248-4254.	1.1	15
18	Viability Assessment of Osteocytes Using Histological Lactate Dehydrogenase Activity Staining on Human Cancellous Bone Sections. Methods in Molecular Biology, 2011, 740, 141-148.	0.4	15

#	Article	IF	CITATIONS
19	Low physical performance determined by chair rising test muscle mechanography is associated with prevalent fragility fractures. Archives of Osteoporosis, 2018, 13, 71.	1.0	12
20	Compound Heterozygous Frameshift Mutations in <i>MESD</i> Cause a Lethal Syndrome Suggestive of Osteogenesis Imperfecta Type XX. Journal of Bone and Mineral Research, 2020, 36, 1077-1087.	3.1	12
21	Reorganization of the osteocyte lacuno-canalicular network characteristics in tumor sites of an immunocompetent murine model of osteotropic cancers. Bone, 2021, 152, 116074.	1.4	12
22	Bone quality analysis of jaw bones in individuals with type 2 diabetes mellitusâ€"post mortem anatomical and microstructural evaluation. Clinical Oral Investigations, 2021, 25, 4377-4400.	1.4	11
23	Multiscale bone quality analysis in osteoarthritic knee joints reveal a role of the mechanosensory osteocyte network in osteophytes. Scientific Reports, 2020, 10, 673.	1.6	10
24	Potential Role of Perilacunar Remodeling in the Progression of Osteoporosis and Implications on Age-Related Decline in Fracture Resistance of Bone. Current Osteoporosis Reports, 2021, 19, 391-402.	1.5	7
25	Analysis of cobalt deposition in periprosthetic bone specimens by high-resolution synchroton XRF in undecalcified histological thin sections. Materialia, 2019, 6, 100290.	1.3	6
26	Multimodal X-ray imaging of nanocontainer-treated macrophages and calcium distribution in the perilacunar bone matrix. Scientific Reports, 2020, 10, 1784.	1.6	6
27	Phenotype and Viability of MLO-Y4 Cells Is Maintained by $TGF\hat{l}^23$ in a Serum-Dependent Manner within a 3D-Co-Culture with MG-63 Cells. International Journal of Molecular Sciences, 2018, 19, 1932.	1.8	5
28	A rapid method for the generation of uniform acellular bone explants: a technical note. Journal of Orthopaedic Surgery and Research, 2010, 5, 32.	0.9	4
29	Trabecular Bone Adaptation to Low-Magnitude High-Frequency Loading in Microgravity. PLoS ONE, 2014, 9, e93527.	1.1	4
30	Cellular Contributors to Bone Homeostasis. Contemporary Cardiology, 2020, , 333-371.	0.0	2
31	Spine Metastases in Immunocompromised Mice after Intracardiac Injection of MDA-MB-231-SCP2 Breast Cancer Cells. Cancers, 2022, 14, 556.	1.7	2
32	Mutually beneficial crosstalk between muscle cells and osteocytes. FASEB Journal, 2011, 25, 1059.17.	0.2	0
33	Establishment of an in vivo model to examine the osteoanabolic epigenome. Bone Abstracts, 0, , .	0.0	0
34	Investigating the osteoanabolic epigenome of aging-related bone loss in humans. Bone Abstracts, 0, , .	0.0	0