Jian-Rong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6863325/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Preparation and characterization of bifunctional edible gellan-polylysine fiber. International Journal of Biological Macromolecules, 2022, 204, 293-299.	7.5	1
2	Structural characterization and in vitro evaluation of the prebiotic potential of an exopolysaccharide produced by Bacillus thuringiensis during fermentation. LWT - Food Science and Technology, 2022, 163, 113532.	5.2	5
3	Synthesis of functional oligosaccharides and their derivatives through cocultivation and cellular NTP regeneration. Advances in Applied Microbiology, 2021, 115, 35-63.	2.4	7
4	Metabolic profiles of oligosaccharides derived from four microbial polysaccharides by faecal inocula from type 2 diabetes patients. International Journal of Food Sciences and Nutrition, 2021, 72, 1-12.	2.8	7
5	Synthesis of branched β-1,3-glucan oligosaccharide with narrow degree of polymerization by fungi co-cultivation. Carbohydrate Polymers, 2021, 273, 118582.	10.2	5
6	An Oligomannuronic Acid-Sialic Acid Conjugate Capable of Inhibiting Aβ42 Aggregation and Alleviating the Inflammatory Response of BV-2 Microglia. International Journal of Molecular Sciences, 2021, 22, 12338.	4.1	4
7	Preparation and property of a biantenna macromolecule based on polysialic acid. International Journal of Biological Macromolecules, 2020, 155, 1342-1349.	7.5	1
8	Enhancement of Sphingolipid Synthesis Improves Osmotic Tolerance of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2020, 86, .	3.1	25
9	Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Bioprocess and Biosystems Engineering, 2019, 42, 777-784.	3.4	10
10	Enhanced <i>N</i> -acetyl- <scp>d</scp> -neuraminic production from glycerol and <i>N</i> -acetyl- <scp>d</scp> -glucosamine by metabolically engineered <i>Escherichia coli</i> with a two-stage pH-shift control strategy. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 125-132	3.0	5
11	Effective production of biologically active water-soluble β-1,3-glucan by a coupled system of Agrobacterium sp. and Trichoderma harzianum. Preparative Biochemistry and Biotechnology, 2018, 48, 446-456.	1.9	8
12	Potential application of a low-viscosity and high-transparency xanthan gum produced from <i>Xanthomonas campestris</i> CCTCC M2015714 in foods. Preparative Biochemistry and Biotechnology, 2018, 48, 402-407.	1.9	13
13	Dipotassium phosphate improves the molecular weight stability of polysialic acid in Escherichia coli K235 culture broth. Bioresource Technology, 2018, 247, 30-35.	9.6	3
14	Influence of Tween-80 on the production and structure of water-insoluble curdlan from Agrobacterium sp International Journal of Biological Macromolecules, 2018, 106, 611-619.	7.5	37
15	Bioproduction, purification, and application of polysialic acid. Applied Microbiology and Biotechnology, 2018, 102, 9403-9409.	3.6	7
16	Preparation of sulfonated silk fibroin for anti-coagulation material. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 1701-1715.	3.5	2
17	ARTP mutation and genome shuffling of ABE fermentation symbiotic system for improvement of butanol production. Applied Microbiology and Biotechnology, 2017, 101, 2189-2199.	3.6	28
18	High production of xanthan gum by a glycerol-tolerant strain Xanthomonas campestris WXLB-006. Preparative Biochemistry and Biotechnology, 2017, 47, 468-472.	1.9	13

JIAN-RONG WU

#	Article	IF	CITATIONS
19	Phosphoenolpyruvate-supply module in Escherichia coli improves N-acetyl-d-neuraminic acid biocatalysis. Biotechnology Letters, 2017, 39, 227-234.	2.2	7
20	Preparation and characterization of a novel polysialic acid–hyaluronan graft copolymer potential as dermal filler. International Journal of Biological Macromolecules, 2017, 99, 692-698.	7.5	4
21	Production of rhamnolipids by semi-solid-state fermentation with Pseudomonas aeruginosa RG18 for heavy metal desorption. Bioprocess and Biosystems Engineering, 2017, 40, 1611-1619.	3.4	25
22	Characterization of xanthan gum produced from glycerol by a mutant strain Xanthomonas campestris CCTCC M2015714. Carbohydrate Polymers, 2017, 157, 521-526.	10.2	67
23	Enhanced production of curdlan by coupled fermentation system of Agrobacterium sp. ATCC 31749 and Trichoderma harzianum GIM 3.442. Carbohydrate Polymers, 2017, 157, 1687-1694.	10.2	20
24	Efficient whole-cell biocatalyst for Neu5Ac production by manipulating synthetic, degradation and transmembrane pathways. Biotechnology Letters, 2017, 39, 55-63.	2.2	11
25	Activation of glycerol metabolism in Xanthomonas campestris by adaptive evolution to produce a high-transparency and low-viscosity xanthan gum from glycerol. Bioresource Technology, 2016, 211, 390-397.	9.6	45
26	Modification with polysialic acid–PEG copolymer as a new method for improving the therapeutic efficacy of proteins. Preparative Biochemistry and Biotechnology, 2016, 46, 788-797.	1.9	5
27	Reconstruction and analysis of a genome-scale metabolic network of Corynebacterium glutamicum S9114. Gene, 2016, 575, 615-622.	2.2	27
28	Synthesis and characterization of polysialic acid/carboxymethyl chitosan hydrogel with potential for drug delivery. Russian Journal of Bioorganic Chemistry, 2015, 41, 562-567.	1.0	5
29	A new polysialic acid production process based on dual-stage pH control and fed-batch fermentation for higher yield and resulting high molecular weight product. Applied Microbiology and Biotechnology, 2013, 97, 2405-2412.	3.6	21
30	Influence of sodium chloride on thermal denaturation of a high-salt-tolerant neutral protease from Aspergillus oryzae. Food Science and Biotechnology, 2013, 22, 1-7.	2.6	149
31	Improved curdlan fermentation process based on optimization of dissolved oxygen combined with pH control and metabolic characterization of Agrobacterium sp. ATCC 31749. Applied Microbiology and Biotechnology, 2012, 93, 367-379.	3.6	39
32	Sequence and transcriptional analysis of the genes responsible for curdlan biosynthesis in Agrobacterium sp. ATCC 31749 under simulated dissolved oxygen gradients conditions. Applied Microbiology and Biotechnology, 2011, 91, 163-175.	3.6	21
33	Enhanced curdlan production in Agrobacterium sp. ATCC 31749 by addition of low-polyphosphates. Biotechnology and Bioprocess Engineering, 2011, 16, 34-41.	2.6	35
34	Improvement of ATP regeneration efficiency and operation stability in porcine interferon-α production by Pichia pastoris under lower induction temperature. Korean Journal of Chemical Engineering, 2011, 28, 1412-1419.	2.7	15
35	Enhancement of polysialic acid yield by reducing initial phosphate and feeding ammonia water to Escherichia coli CCTCC M208088. Biotechnology and Bioprocess Engineering, 2010, 15, 657-663.	2.6	8
36	Improvement of the CuZn-superoxide dismutase enzyme activity and stability as a therapeutic agent by modification with polysialic acids. Biotechnology Letters, 2010, 32, 1939-1945.	2.2	14

JIAN-RONG WU

#	Article	IF	CITATIONS
37	An efficient and large-scale preparation process for polysialic acid by Escherichia coli CCTCC M208088. Biochemical Engineering Journal, 2010, 53, 97-103.	3.6	15
38	New Strategy for Enhancement Curdlan Biosynthesis in Alcaligenes faecalis by Activating Gene Expression. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
39	Enhanced Production of Curdlan by Alcaligenes faecalis by Selective Feeding with Ammonia Water during the Cell Growth Phase of Fermentation. Shengwu Gongcheng Xuebao/Chinese Journal of Biotechnology, 2008, 24, 1035-1039.	0.2	27
40	Effect of metabolic structures and energy requirements on curdlan production byAlcaligenes faecalis. Biotechnology and Bioprocess Engineering, 2007, 12, 359-365.	2.6	23
41	Production of polysialic acid from fed-batch fermentation with pH control. Biochemical Engineering Journal, 2002, 11, 201-204.	3.6	21
42	Metabolic fate of dietary sialic acid and its influence on gut and oral bacteria. Systems Microbiology and Biomanufacturing, 0, , 1.	2.9	1