Maarten van den Berge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6863016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bronchial gene expression signature associated with rate of subsequent FEV ₁ decline in individuals with and at risk of COPD. Thorax, 2022, 77, 31-39.	2.7	8
2	Identification of asthma-associated microRNAs in bronchial biopsies. European Respiratory Journal, 2022, 59, 2101294.	3.1	19
3	Determinants of expression of SARSâ€CoVâ€2 entryâ€related genes in upper and lower airways. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 690-694.	2.7	15
4	Changes in lung function in European adults born between 1884 and 1996 and implications for the diagnosis of lung disease: a cross-sectional analysis of ten population-based studies. Lancet Respiratory Medicine,the, 2022, 10, 83-94.	5.2	19
5	Moxidectin and Ivermectin Inhibit SARS-CoV-2 Replication in Vero E6 Cells but Not in Human Primary Bronchial Epithelial Cells. Antimicrobial Agents and Chemotherapy, 2022, 66, AAC0154321.	1.4	19
6	Genetic Associations and Architecture of Asthma-COPD Overlap. Chest, 2022, 161, 1155-1166.	0.4	15
7	Alpine altitude climate treatment for severe and uncontrolled asthma: An EAACI position paper. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1991-2024.	2.7	21
8	MicroRNAs Associated with Chronic Mucus Hypersecretion in COPD Are Involved in Fibroblast–Epithelium Crosstalk. Cells, 2022, 11, 526.	1.8	2
9	Clinical significance and applications of oscillometry. European Respiratory Review, 2022, 31, 210208.	3.0	64
10	Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis. European Radiology, 2022, 32, 5308-5318.	2.3	5
11	The role of small airway dysfunction in asthma control and exacerbations: a longitudinal, observational analysis using data from the ATLANTIS study. Lancet Respiratory Medicine,the, 2022, 10, 661-668.	5.2	41
12	High miR203a-3p and miR-375 expression in the airways of smokers with and without COPD. Scientific Reports, 2022, 12, 5610.	1.6	5
13	Quality over quantity: the importance of collecting relevant samples to understand complex diseases. European Respiratory Journal, 2022, 59, 2200418.	3.1	1
14	Acute cigarette smokeâ€induced <scp>eQTL</scp> affects formyl peptide receptor expression and lung function. Respirology, 2021, 26, 233-240.	1.3	7
15	RAGE and TLR4 differentially regulate airway hyperresponsiveness: Implications for COPD. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1123-1135.	2.7	14
16	Periostin: contributor to abnormal airway epithelial function in asthma?. European Respiratory Journal, 2021, 57, 2001286.	3.1	27
17	The novel TRPA1 antagonist BI01305834 inhibits ovalbumin-induced bronchoconstriction in guinea pigs. Respiratory Research, 2021, 22, 48.	1.4	6
18	Multi-omics highlights ABO plasma protein as a causal risk factor for COVID-19. Human Genetics, 2021, 140, 969-979.	1.8	36

#	Article	IF	CITATIONS
19	An assessment of the correlation between robust CT-derived ventilation and pulmonary function test in a cohort with no respiratory symptoms. British Journal of Radiology, 2021, 94, 20201218.	1.0	2
20	Human airway mast cells proliferate and acquire distinct inflammation-driven phenotypes during type 2 inflammation. Science Immunology, 2021, 6, .	5.6	79
21	Comparison of genome-wide gene expression profiling by RNA Sequencing <i>versus</i> microarray in bronchial biopsies of COPD patients before and after inhaled corticosteroid treatment: does it provide new insights?. ERJ Open Research, 2021, 7, 00104-2021.	1.1	2
22	<i>COL4A3</i> expression in asthmatic epithelium depends on intronic methylation and ZNF263 binding. ERJ Open Research, 2021, 7, 00802-2020.	1.1	3
23	Seasonal prevalence and characteristics of low-dose CT detected lung nodules in a general Dutch population. Scientific Reports, 2021, 11, 9139.	1.6	3
24	Realâ€life impact of COVIDâ€19 pandemic lockdown on the management of pediatric and adult asthma: A survey by the EAACI Asthma Section. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2776-2784.	2.7	19
25	Single-nucleotide polymorphism rs2070600 regulates <i>AGER</i> splicing and the sputum levels of the COPD biomarker soluble receptor for advanced glycation end-products. ERJ Open Research, 2021, 7, 00947-2020.	1.1	6
26	Neutrophilic Asthma Is Associated With Smoking, High Numbers of IRF5+, and Low Numbers of IL10+ Macrophages. Frontiers in Allergy, 2021, 2, 676930.	1.2	2
27	The sputum transcriptome better predicts COPD exacerbations after the withdrawal of inhaled corticosteroids than sputum eosinophils. ERJ Open Research, 2021, 7, 00097-2021.	1.1	7
28	Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Communications Biology, 2021, 4, 700.	2.0	77
29	Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility?. Redox Biology, 2021, 43, 101995.	3.9	25
30	Functional respiratory imaging assessment of budesonide/glycopyrrolate/formoterol fumarate and glycopyrrolate/formoterol fumarate metered dose inhalers in patients with COPD: the value of inhaled corticosteroids. Respiratory Research, 2021, 22, 191.	1.4	6
31	Resveratrol and Pterostilbene Inhibit SARS-CoV-2 Replication in Air–Liquid Interface Cultured Human Primary Bronchial Epithelial Cells. Viruses, 2021, 13, 1335.	1.5	47
32	Real-life evidence in ERS clinical practice guidelines: from foes to friends. European Respiratory Journal, 2021, 58, 2101718.	3.1	5
33	Improved precision of noise estimation in CT with a volume-based approach. European Radiology Experimental, 2021, 5, 39.	1.7	0
34	Spirometric phenotypes from early childhood to young adulthood: a Chronic Airway Disease Early Stratification study. ERJ Open Research, 2021, 7, 00457-2021.	1.1	13
35	Phenotypic and functional translation of IL33 genetics in asthma. Journal of Allergy and Clinical Immunology, 2021, 147, 144-157.	1.5	29
36	MiR-223 is increased in lungs of patients with COPD and modulates cigarette smoke-induced pulmonary inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 321, L1091-L1104.	1.3	9

#	Article	IF	CITATIONS
37	3TR: a pan-European cross-disease research consortium aimed at improving personalised biological treatment of asthma and COPD. European Respiratory Journal, 2021, 58, 2102168.	3.1	8
38	Transcriptome Based Signatures: The Future Biomarkers in Obstructive Pulmonary Diseases Such as Asthma and COPD?. American Journal of Respiratory and Critical Care Medicine, 2021, , .	2.5	0
39	Success and continuous growth of the ERS clinical research collaborations. European Respiratory Journal, 2021, 58, 2102527.	3.1	7
40	Nasal gene expression changes with inhaled corticosteroid treatment in asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 191-194.	2.7	4
41	Early imaging biomarkers of lung cancer, COPD and coronary artery disease in the general population: rationale and design of the ImaLife (Imaging in Lifelines) Study. European Journal of Epidemiology, 2020, 35, 75-86.	2.5	32
42	Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. Journal of Pathology, 2020, 250, 624-635.	2.1	116
43	Cigarette smoke exposure alters phosphodiesterases in human structural lung cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L59-L64.	1.3	12
44	Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission. European Respiratory Journal, 2020, 55, 1901280.	3.1	29
45	Potential for dose reduction in CT emphysema densitometry with post-scan noise reduction: a phantom study. British Journal of Radiology, 2020, 93, 20181019.	1.0	11
46	Blood eosinophil count and airway epithelial transcriptome relationships in COPD versus asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 370-380.	2.7	37
47	MiRâ€31â€5p: A shared regulator of chronic mucus hypersecretion in asthma and chronic obstructive pulmonary disease. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 703-706.	2.7	11
48	Genetic regulation of gene expression of MIF family members in lung tissue. Scientific Reports, 2020, 10, 16980.	1.6	8
49	Identifying a nasal gene expression signature associated with hyperinflation and treatment response in severe COPD. Scientific Reports, 2020, 10, 17415.	1.6	2
50	A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 614-618.	2.5	13
51	Link between increased cellular senescence and extracellular matrix changes in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L48-L60.	1.3	36
52	Integrated proteogenomic approach identifying a protein signature of COPD and a new splice variant of SORBS1. Thorax, 2020, 75, 180-183.	2.7	16
53	Sputum microbiome profiling in COPD: beyond singular pathogen detection. Thorax, 2020, 75, 338-344.	2.7	37
54	Nasal DNA methylation profiling of asthma and rhinitis. Journal of Allergy and Clinical Immunology, 2020, 145, 1655-1663.	1.5	56

#	Article	IF	CITATIONS
55	Technical standards for respiratory oscillometry. European Respiratory Journal, 2020, 55, 1900753.	3.1	311
56	Cholinergic neuroplasticity in asthma driven by TrkB signaling. FASEB Journal, 2020, 34, 7703-7717.	0.2	17
57	Gene expression profiling of bronchial brushes is associated with the level of emphysema measured by computed tomography-based parametric response mapping. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1222-L1228.	1.3	6
58	Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Research, 2020, 5, 111.	0.9	3
59	Gene expression network analysis provides potential targets against SARS-CoV-2. Scientific Reports, 2020, 10, 21863.	1.6	9
60	ACE inhibition and cardiometabolic risk factors, lung <i>ACE2</i> and <i>TMPRSS2</i> gene expression, and plasma ACE2 levels: a Mendelian randomization study. Royal Society Open Science, 2020, 7, 200958.	1.1	12
61	Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight, 2020, 5, .	2.3	26
62	Differences in lung clearance index and functional residual capacity between two commercial multiple-breath nitrogen washout devices in healthy children and adults. ERJ Open Research, 2020, 6, 00247-2019.	1.1	7
63	Variants associated with HHIP expression have sex-differential effects on lung function. Wellcome Open Research, 2020, 5, 111.	0.9	4
64	Predicted values for the forced expiratory flow adjusted for forced vital capacity, a descriptive study. ERJ Open Research, 2020, 6, 00426-2020.	1.1	2
65	Blood eosinophils as a continuous variable in the treatment of COPD: impact on the guidelines. Lancet Respiratory Medicine,the, 2019, 7, 722-723.	5.2	9
66	The pharmacogenomics of inhaled corticosteroids and lung function decline in COPD. European Respiratory Journal, 2019, 54, 1900521.	3.1	14
67	Current Smoking is Associated with Decreased Expression of miR-335-5p in Parenchymal Lung Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 5176.	1.8	15
68	Laminin α4 contributes to airway remodeling and inflammation in asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2019, 317, L768-L777.	1.3	12
69	A cellular census of human lungs identifies novel cell states in health and in asthma. Nature Medicine, 2019, 25, 1153-1163.	15.2	631
70	Differential lung tissue gene expression in males and females: implications for the susceptibility to develop COPD. European Respiratory Journal, 2019, 54, 1702567.	3.1	8
71	A review on the pathophysiology of asthma remission. , 2019, 201, 8-24.		36
72	The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 31-41.	1.4	178

#	Article	IF	CITATIONS
73	Chronic Airway Diseases Early Stratification (CADSET): a new ERS Clinical Research Collaboration. European Respiratory Journal, 2019, 53, 1900217.	3.1	25
74	Applying the CAMP trial asthma remission prediction model to the Dutch asthma remission studies. Journal of Allergy and Clinical Immunology, 2019, 143, 1973-1975.	1.5	3
75	Exploring the relevance and extent of small airways dysfunction in asthma (ATLANTIS): baseline data from a prospective cohort study. Lancet Respiratory Medicine,the, 2019, 7, 402-416.	5.2	225
76	Effect of long-term corticosteroid treatment on microRNA and gene-expression profiles in COPD. European Respiratory Journal, 2019, 53, 1801202.	3.1	29
77	AGER expression and alternative splicing in bronchial biopsies of smokers and never smokers. Respiratory Research, 2019, 20, 70.	1.4	21
78	The REal Life EVidence AssessmeNt Tool (RELEVANT): development of a novel quality assurance asset to rate observational comparative effectiveness research studies. Clinical and Translational Allergy, 2019, 9, 21.	1.4	24
79	Associations of AMP and adenosine induced dyspnea sensation to large and small airways dysfunction in asthma. BMC Pulmonary Medicine, 2019, 19, 23.	0.8	5
80	New genetic signals for lung function highlight pathways and chronic obstructive pulmonary disease associations across multiple ancestries. Nature Genetics, 2019, 51, 481-493.	9.4	350
81	Assessing small airways dysfunction in asthma, asthma remission and healthy controls using particles in exhaled air. ERJ Open Research, 2019, 5, 00202-2019.	1.1	2
82	Gene network approach reveals co-expression patterns in nasal and bronchial epithelium. Scientific Reports, 2019, 9, 15835.	1.6	14
83	Genetic profiling for disease stratification in chronic obstructive pulmonary disease and asthma. Current Opinion in Pulmonary Medicine, 2019, 25, 317-322.	1.2	8
84	Factors associated with hyperresponsiveness toÂadenosine 5'â€monophosphateÂin healthy subjects. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2268-2270.	2.7	1
85	Characterizing smoking-induced transcriptional heterogeneity in the human bronchial epithelium at single-cell resolution. Science Advances, 2019, 5, eaaw3413.	4.7	64
86	Moderate-to-severe asthma in individuals of European ancestry: a genome-wide association study. Lancet Respiratory Medicine,the, 2019, 7, 20-34.	5.2	183
87	Predictive value of eosinophils and neutrophils on clinical effects of ICS in COPD. Respirology, 2018, 23, 1023-1031.	1.3	24
88	Realising the potential of various inhaled airway challenge agents through improved delivery to the lungs. Pulmonary Pharmacology and Therapeutics, 2018, 49, 27-35.	1.1	3
89	Nasal epithelium as a proxy for bronchial epithelium for smoking-induced gene expression and expression Quantitative Trait Loci. Journal of Allergy and Clinical Immunology, 2018, 142, 314-317.e15.	1.5	32
90	Leveraging lung tissue transcriptome to uncover candidate causal genes in COPD genetic associations. Human Molecular Genetics, 2018, 27, 1819-1829.	1.4	37

#	Article	IF	CITATIONS
91	Unique mechanisms of connective tissue growth factor regulation in airway smooth muscle in asthma: Relationship with airway remodelling. Journal of Cellular and Molecular Medicine, 2018, 22, 2826-2837.	1.6	8
92	Lung tissue gene-expression signature for the ageing lung in COPD. Thorax, 2018, 73, 609-617.	2.7	36
93	Predictors of clinical response to extrafine and non-extrafine particle inhaled corticosteroids in smokers and ex-smokers with asthma. Respiratory Research, 2018, 19, 256.	1.4	6
94	An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup. Journal of Clinical Investigation, 2018, 129, 169-181.	3.9	77
95	Profiling of healthy and asthmatic airway smooth muscle cells following interleukin-1β treatment: a novel role for CCL20 in chronic mucus hypersecretion. European Respiratory Journal, 2018, 52, 1800310.	3.1	38
96	Association between blood eosinophil count and risk of readmission for patients with asthma: Historical cohort study. PLoS ONE, 2018, 13, e0201143.	1.1	28
97	microRNA–mRNA regulatory networks underlying chronic mucus hypersecretion in COPD. European Respiratory Journal, 2018, 52, 1701556.	3.1	37
98	Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function. Nature Communications, 2018, 9, 2976.	5.8	85
99	Parametric response mapping on chest computed tomography associates with clinical and functional parameters in chronic obstructive pulmonary disease. Respiratory Medicine, 2017, 123, 48-55.	1.3	52
100	Genome-wide association analyses for lung function and chronic obstructive pulmonary disease identify new loci and potential druggable targets. Nature Genetics, 2017, 49, 416-425.	9.4	257
101	Methacholine challenge tests to demonstrate therapeutic equivalence of terbutaline sulfate via different Turbuhaler ® devices in patients with mild to moderate asthma: Appraisal of a four-way crossover design. Pulmonary Pharmacology and Therapeutics, 2017, 44, 1-6.	1.1	3
102	Small airway imaging phenotypes in biomass- and tobacco smoke-exposed patients with COPD. ERJ Open Research, 2017, 3, 00124-2016.	1.1	16
103	Responsiveness to Ipratropium Bromide in Male and Female Patients with Mild to Moderate Chronic Obstructive Pulmonary Disease. EBioMedicine, 2017, 19, 139-145.	2.7	27
104	Sulfatase modifying factor 1 (SUMF1) is associated with Chronic Obstructive Pulmonary Disease. Respiratory Research, 2017, 18, 77.	1.4	9
105	CT-Based Local Distribution Metric Improves Characterization of COPD. Scientific Reports, 2017, 7, 2999.	1.6	26
106	American Thoracic Society/National Heart, Lung, and Blood Institute Asthma–Chronic Obstructive Pulmonary Disease Overlap Workshop Report. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 375-381.	2.5	86
107	Genetic variance is associated with susceptibility for cigarette smoke-induced DAMP release in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L559-L580.	1.3	15
108	Childhood factors associated with complete and clinical asthma remissionÂat 25 and 49â€years. European Respiratory Journal, 2017, 49, 1601974.	3.1	19

#	Article	IF	CITATIONS
109	Year in review 2016: <scp>Chronic obstructive pulmonary disease</scp> and asthma. Respirology, 2017, 22, 820-828.	1.3	3
110	Human asthma is characterized by more IRF5+ M1 and CD206+ M2 macrophages and less IL-10+ M2-like macrophages around airways compared with healthy airways. Journal of Allergy and Clinical Immunology, 2017, 140, 280-283.e3.	1.5	66
111	A Potent Tartrate Resistant Acid Phosphatase Inhibitor to Study the Function of TRAP in Alveolar Macrophages. Scientific Reports, 2017, 7, 12570.	1.6	15
112	microRNA profiling in lung tissue and bronchoalveolar lavage of cigarette smoke-exposed mice and in COPD patients: a translational approach. Scientific Reports, 2017, 7, 12871.	1.6	44
113	Extrafine compared to non-extrafine particle inhaled corticosteroids in smokers and ex-smokers with asthma. Respiratory Medicine, 2017, 130, 35-42.	1.3	9
114	Targeting the small airways with dry powder adenosine: a challenging concept. European Clinical Respiratory Journal, 2017, 4, 1369328.	0.7	5
115	Surfactant protein D is a causal risk factor for COPD: results of Mendelian randomisation. European Respiratory Journal, 2017, 50, 1700657.	3.1	45
116	Airway wall thickness on HRCT scans decreases with age and increases with smoking. BMC Pulmonary Medicine, 2017, 17, 27.	0.8	23
117	Nasal gene expression differentiates COPD from controls and overlaps bronchial gene expression. Respiratory Research, 2017, 18, 213.	1.4	33
118	Identification of transforming growth factor-beta-regulated microRNAs and the microRNA-targetomes in primary lung fibroblasts. PLoS ONE, 2017, 12, e0183815.	1.1	34
119	The Asthma COPD Overlap Syndrome: ACOS Epidemiology and Historical Perspective. Tanaffos, 2017, 16, S22-S23.	0.5	0
120	The Asthma COPD Overlap Syndrome: ACOS. Epidemiology and Historical Perspective. Tanaffos, 2017, 16, S26-S28.	0.5	0
121	The asthma–COPD overlap syndrome: how is it defined and what are its clinical implications?. Journal of Asthma and Allergy, 2016, 9, 27.	1.5	30
122	Identification of Susceptibility Genes of Adult Asthma in French Canadian Women. Canadian Respiratory Journal, 2016, 2016, 1-12.	0.8	10
123	Chronic Obstructive Pulmonary Disease Is Not Associated with KRAS Mutations in Non-Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0152317.	1.1	10
124	Human Lung Tissue Transcriptome: Influence of Sex and Age. PLoS ONE, 2016, 11, e0167460.	1.1	14
125	Cardiac impact of inhaled therapy in the largest randomised placebo-controlled trial in COPD history: have we reached the SUMMIT?. ERJ Open Research, 2016, 2, 00055-2016.	1.1	2
126	Viral mimic poly-(I:C) attenuates airway epithelial T-cell suppressive capacity: implications for asthma. European Respiratory Journal, 2016, 48, 1785-1788.	3.1	11

#	Article	IF	CITATIONS
127	Airway hyperresponsiveness in chronic obstructive pulmonary disease: AÂmarker of asthma-chronic obstructive pulmonary disease overlap syndrome?. Journal of Allergy and Clinical Immunology, 2016, 138, 1571-1579.e10.	1.5	44
128	Cigarette smoke-induced epithelial expression of WNT-5B: implications for COPD. European Respiratory Journal, 2016, 48, 504-515.	3.1	49
129	Advanced glycation endproducts and their receptor in different body compartments in COPD. Respiratory Research, 2016, 17, 46.	1.4	49
130	A pro-inflammatory role for the Frizzled-8 receptor in chronic bronchitis. Thorax, 2016, 71, 312-322.	2.7	21
131	FKBP5 a candidate for corticosteroid insensitivity in COPD. , 2016, , .		2
132	Glycogen synthase kinase-3β modulation of glucocorticoid responsiveness in COPD. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 309, L1112-L1123.	1.3	21
133	Tiotropium attenuates IL-13-induced goblet cell metaplasia of human airway epithelial cells. Thorax, 2015, 70, 668-676.	2.7	46
134	Asthma–COPD Overlap. Clinical Relevance of Genomic Signatures of Type 2 Inflammation in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 758-766.	2.5	257
135	Regular treatment for moderate asthma: guidelines hold true. Lancet Respiratory Medicine,the, 2015, 3, 88-89.	5.2	6
136	Muscarinic M ₃ receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L96-L103.	1.3	25
137	A large lung gene expression study identifying fibulin-5 as a novel player in tissue repair in COPD. Thorax, 2015, 70, 21-32.	2.7	89
138	Revisiting the Dutch hypothesis. Journal of Allergy and Clinical Immunology, 2015, 136, 521-529.	1.5	62
139	Effects of ageing and smoking on pulmonary computed tomography scans using parametric response mapping. European Respiratory Journal, 2015, 46, 1193-1196.	3.1	28
140	The different faces of the asthmaâ^'COPD overlap syndrome. European Respiratory Journal, 2015, 46, 587-590.	3.1	12
141	Unmet needs for the assessment of small airways dysfunction in asthma: introduction to the ATLANTIS study. European Respiratory Journal, 2015, 45, 1534-1538.	3.1	23
142	Risk factors and early origins of chronic obstructive pulmonary disease. Lancet, The, 2015, 385, 899-909.	6.3	410
143	Susceptibility to COPD: Differential Proteomic Profiling after Acute Smoking. PLoS ONE, 2014, 9, e102037.	1.1	32
144	Development of a tool to recognize small airways dysfunction in asthma (SADT). Health and Quality of Life Outcomes, 2014, 12, 155.	1.0	12

#	Article	IF	CITATIONS
145	Airway gene expression in COPD is dynamic with inhaled corticosteroid treatment and reflects biological pathways associated with disease activity. Thorax, 2014, 69, 14-23.	2.7	65
146	Genetic regulation of gene expression in the lung identifies <i>CST3</i> and <i>CD22</i> as potential causal genes for airflow obstruction. Thorax, 2014, 69, 997-1004.	2.7	30
147	Asthma and Chronic Obstructive Pulmonary Disease. Clinics in Chest Medicine, 2014, 35, 143-156.	0.8	80
148	Parametric Response Mapping as an Indicator of Bronchiolitis Obliterans Syndrome after Hematopoietic Stem Cell Transplantation. Biology of Blood and Marrow Transplantation, 2014, 20, 1592-1598.	2.0	64
149	Advanced glycation end products in the skin are enhanced in COPD. Metabolism: Clinical and Experimental, 2014, 63, 1149-1156.	1.5	34
150	Common genes underlying asthma and COPD? Genome-wide analysis on the Dutch hypothesis. European Respiratory Journal, 2014, 44, 860-872.	3.1	49
151	Quantification of free and total desmosine and isodesmosine in human urine by liquid chromatography tandem mass spectrometry: A comparison of the surrogate-analyte and the surrogate-matrix approach for quantitation. Journal of Chromatography A, 2014, 1326, 13-19.	1.8	41
152	Glucocorticoids induce the production of the chemoattractant CCL20 in airway epithelium. European Respiratory Journal, 2014, 44, 361-370.	3.1	26
153	Susceptibility to Chronic Mucus Hypersecretion, a Genome Wide Association Study. PLoS ONE, 2014, 9, e91621.	1.1	25
154	Lower Corticosteroid Skin Blanching Response Is Associated with Severe COPD. PLoS ONE, 2014, 9, e91788.	1.1	6
155	A Dynamic Bronchial Airway Gene Expression Signature of Chronic Obstructive Pulmonary Disease and Lung Function Impairment. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 933-942.	2.5	142
156	Lung eQTLs to Help Reveal the Molecular Underpinnings of Asthma. PLoS Genetics, 2012, 8, e1003029.	1.5	261
157	Clinical and inflammatory determinants of bronchial hyperresponsiveness in COPD. European Respiratory Journal, 2012, 40, 1098-1105.	3.1	53
158	Prediction and course of symptoms and lung function around an exacerbation in chronic obstructive pulmonary disease. Respiratory Research, 2012, 13, 44.	1.4	31
159	Small Airway Disease in Asthma and COPD. Chest, 2011, 139, 412-423.	0.4	162
160	Beneficial Effects of Treatment With Anti-IgE Antibodies (Omalizumab) in a Patient With Severe Asthma and Negative Skin-Prick Test Results. Chest, 2011, 139, 190-193.	0.4	39
161	Role of Adenosine Receptors in the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Drugs in R and D, 2007, 8, 13-23.	1.1	22