List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862959/publications.pdf Version: 2024-02-01

47409 53065 8,261 94 49 89 citations h-index g-index papers 97 97 97 9020 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Nitrogen-doped carbon embedded with Ag nanoparticles for bidirectionally-promoted polysulfide redox electrochemistry. Chemical Engineering Journal, 2022, 427, 130897.	6.6	9
2	Ordered macroporous V-doped ZnO framework impregnated with microporous carbon nanocages as multifunctional sulfur reservoir in lithium-sulfur batteries. Chemical Engineering Journal, 2022, 431, 134242.	6.6	18
3	A spatially efficient "tube-in-tube―hybrid for durable sulfur electrochemistry. Journal of Materials Chemistry A, 2022, 10, 5460-5469.	5.2	5
4	Coordinatively Deficient Single-atom Fe-N-C Electrocatalyst with Optimized Electronic Structure for High-performance Lithium-sulfur Batteries. Energy Storage Materials, 2022, 46, 269-277.	9.5	95
5	Finelyâ€Dispersed Ni ₂ Co Nanoalloys on Flowerâ€Like Graphene Microassembly Empowering a Biâ€5ervice Matrix for Superior Lithium–Sulfur Electrochemistry. Advanced Functional Materials, 2022, 32, .	7.8	22
6	Three-dimensional structural confinement design of conductive metal oxide for efficient sulfur host in Lithium-sulfur batteries. Chemical Engineering Journal, 2022, 448, 137656.	6.6	16
7	Unsaturated coordination polymer frameworks as multifunctional sulfur reservoir for fast and durable lithium-sulfur batteries. Nano Energy, 2021, 79, 105393.	8.2	37
8	Dissolving Vanadium into Titanium Nitride Lattice Framework for Rational Polysulfide Regulation in Li–S Batteries. Advanced Energy Materials, 2021, 11, 2003020.	10.2	52
9	Amorphous–crystalline-heterostructured niobium oxide as two-in-one host matrix for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2021, 9, 11160-11167.	5.2	39
10	Constructing multifunctional solid electrolyte interface via in-situ polymerization for dendrite-free and low N/P ratio lithium metal batteries. Nature Communications, 2021, 12, 186.	5.8	163
11	Hierarchical Microâ€Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for Highâ€Performance Lithium–Sulfur Batteries. Advanced Science, 2021, 8, 2003400.	5.6	63
12	Reinforced polysulfide barrier by g-C3N4/CNT composite towards superior lithium-sulfur batteries. Journal of Energy Chemistry, 2021, 53, 234-240.	7.1	74
13	Lithium–Sulfur Batteries: Hierarchical Microâ€Nanoclusters of Bimetallic Layered Hydroxide Polyhedrons as Advanced Sulfur Reservoir for Highâ€Performance Lithium–Sulfur Batteries (Adv. Sci.) Tj ETQq1	. 15067843	3141rgBT /Ov
14	"Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for Highâ€Energy and Long‣asting Lithium–Sulfur Batteries. Advanced Energy Materials, 2021, 11, 2100497.	10.2	53
15	Facile fabrication of compact LiFePO4/C composite with excellent atomically-efficient for high-energy-density Li-ion batteries. Journal of Power Sources, 2021, 496, 229759.	4.0	17
16	Aligned sulfur-deficient ZnS1â^'x nanotube arrays as efficient catalyzer for high-performance lithium/sulfur batteries. Nano Energy, 2021, 84, 105891.	8.2	81
17	Li–S Batteries: "Sauna―Activation toward Intrinsic Lattice Deficiency in Carbon Nanotube Microspheres for Highâ€Energy and Longâ€Lasting Lithium–Sulfur Batteries (Adv. Energy Mater. 26/2021). Advanced Energy Materials, 2021, 11, 2170099.	10.2	1
18	3d-Orbital Occupancy Regulated Ir-Co Atomic Pair Toward Superior Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2021, 11, 8837-8846.	5.5	110

#	Article	IF	CITATIONS
19	Amorphizing metal-organic framework towards multifunctional polysulfide barrier for high-performance lithium-sulfur batteries. Nano Energy, 2021, 86, 106094.	8.2	103
20	δ-VOPO4 nanosheet with intrinsic V4+ defective as high-performance cathode for sodium-ion battery. Materials Today Energy, 2021, 21, 100756.	2.5	8
21	3D ordered macroporous amorphous Nb2O5 as anode material for high-performance sodium-ion batteries. Applied Surface Science, 2021, 567, 150862.	3.1	17
22	Oxygen-deficient and orderly mesoporous cobalt oxide nanospheres for superior lithium storage. Journal of Alloys and Compounds, 2021, 887, 161339.	2.8	5
23	Porous Carbon Nanosheets Armoring 3D Current Collectors toward Ultrahigh Mass Loading for High-Energy-Density All-Solid-State Supercapacitors. ACS Applied Materials & Interfaces, 2021, 13, 52519-52529.	4.0	6
24	Interspersing Partially Oxidized V ₂ C Nanosheets and Carbon Nanotubes toward Multifunctional Polysulfide Barriers for High-Performance Lithium-Sulfur Batteries. ACS Applied Materials & Interfaces, 2021, 13, 56085-56094.	4.0	26
25	Biomass-derived nitrogen-doped hierarchical porous carbon as efficient sulfur host for lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 44, 61-67.	7.1	147
26	Zwitterionic impetus on single lithium-ion conduction in solid polymer electrolyte for all-solid-state lithium-ion batteries. Chemical Engineering Journal, 2020, 384, 123237.	6.6	47
27	Lowâ€Bandgap Seâ€Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2020, 32, e1904876.	11.1	206
28	Metallically conductive TiB2 as a multi-functional separator modifier for improved lithium sulfur batteries. Journal of Power Sources, 2020, 448, 227336.	4.0	34
29	A Triphasic Bifunctional Oxygen Electrocatalyst with Tunable and Synergetic Interfacial Structure for Rechargeable Znâ€Air Batteries. Advanced Energy Materials, 2020, 10, 1903003.	10.2	74
30	Engineering the Conductive Network of Metal Oxideâ€Based Sulfur Cathode toward Efficient and Longevous Lithium–Sulfur Batteries. Advanced Energy Materials, 2020, 10, 2002076.	10.2	126
31	Ultrafine, high-loading and oxygen-deficient cerium oxide embedded on mesoporous carbon nanosheets for superior lithium–oxygen batteries. Nano Energy, 2020, 71, 104570.	8.2	28
32	Tensile-strained ruthenium phosphide by anion substitution for highly active and durable hydrogen evolution. Nano Energy, 2020, 77, 105212.	8.2	39
33	Regulating the Li ⁺ olvation Structure of Ester Electrolyte for Highâ€Energyâ€Density Lithium Metal Batteries. Small, 2020, 16, e2004688.	5.2	34
34	Engineering Solvation Complex–Membrane Interaction to Suppress Cation Crossover in 3 V Cuâ€Al Battery. Small, 2020, 16, 2003438.	5.2	11
35	Graphene Quantum Dotsâ€Based Advanced Electrode Materials: Design, Synthesis and Their Applications in Electrochemical Energy Storage and Electrocatalysis. Advanced Energy Materials, 2020, 10, 2001275.	10.2	109
36	Revealing the Rapid Electrocatalytic Behavior of Ultrafine Amorphous Defective Nb ₂ O _{5–<i>x</i>} Nanocluster toward Superior Li–S Performance. ACS Nano, 2020, 14, 4849-4860.	7.3	201

#	Article	IF	CITATIONS
37	Three-dimensionally ordered macro-microporous metal organic frameworks with strong sulfur immobilization and catalyzation for high-performance lithium-sulfur batteries. Nano Energy, 2020, 72, 104685.	8.2	160
38	Na2CoPO4F as a pseudocapacitive anode for high-performance and ultrastable hybrid sodium-ion capacitors. Electrochimica Acta, 2020, 342, 136024.	2.6	9
39	Tantalum-Based Electrocatalyst for Polysulfide Catalysis and Retention for High-Performance Lithium-Sulfur Batteries. Matter, 2020, 3, 920-934.	5.0	104
40	Review—Wearable Graphene Devices for Sensing. Journal of the Electrochemical Society, 2020, 167, 037541.	1.3	38
41	Fast production of zinc–hexamethylenetetramine complex microflowers as an advanced sulfur reservoir for high-performance lithium–sulfur batteries. Journal of Materials Chemistry A, 2020, 8, 5062-5069.	5.2	14
42	Lithiumâ€Sulfur Batteries: Lowâ€Bandgap Seâ€Deficient Antimony Selenide as a Multifunctional Polysulfide Barrier toward Highâ€Performance Lithium–Sulfur Batteries (Adv. Mater. 4/2020). Advanced Materials, 2020, 32, 2070030.	11.1	6
43	Advanced Electrode Materials Comprising of Structureâ€Engineered Quantum Dots for Highâ€Performance Asymmetric Microâ€5upercapacitors. Advanced Energy Materials, 2020, 10, 1903724.	10.2	36
44	Polysulfide Regulation by the Zwitterionic Barrier toward Durable Lithium–Sulfur Batteries. Journal of the American Chemical Society, 2020, 142, 3583-3592.	6.6	174
45	Hierarchical Defective Fe _{3â€} <i>_x</i> C@C Hollow Microsphere Enables Fast and Long‣asting Lithium–Sulfur Batteries. Advanced Functional Materials, 2020, 30, 2001165.	7.8	144
46	Lithium–Sulfur Batteries: Hierarchical Defective Fe _{3â€} <i>_x</i> C@C Hollow Microsphere Enables Fast and Long‣asting Lithium–Sulfur Batteries (Adv. Funct. Mater. 22/2020). Advanced Functional Materials, 2020, 30, .	7.8	1
47	Vertically rooting multifunctional tentacles on carbon scaffold as efficient polysulfide barrier toward superior lithium-sulfur batteries. Nano Energy, 2019, 64, 103905.	8.2	119
48	An ion conductive polyimide encapsulation: New insight and significant performance enhancement of sodium based P2 layered cathodes. Energy Storage Materials, 2019, 22, 168-178.	9.5	22
49	Defectâ€Enriched Nitrogen Doped–Graphene Quantum Dots Engineered NiCo ₂ S ₄ Nanoarray as Highâ€Efficiency Bifunctional Catalyst for Flexible Znâ€Air Battery. Small, 2019, 15, e1903610.	5.2	84
50	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie, 2019, 131, 9742-9747.	1.6	59
51	Rücktitelbild: A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction (Angew.) Tj ETQq2	1 1 0.784 1.6	314 rgBT /0
52	Improved Composite Solid Electrolyte through Ionic Liquid-Assisted Polymer Phase for Solid-State Lithium Ion Batteries. Journal of the Electrochemical Society, 2019, 166, A1785-A1792.	1.3	20
53	Black BaTiO3 as multifunctional sulfur immobilizer for superior lithium sulfur batteries. Journal of Power Sources, 2019, 434, 226729.	4.0	34
54	A Singleâ€Atom Iridium Heterogeneous Catalyst in Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9640-9645.	7.2	312

#	Article	IF	CITATIONS
55	Synergistic Engineering of Defects and Architecture in Binary Metal Chalcogenide toward Fast and Reliable Lithium–Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1900228.	10.2	177
56	Constructing metal-free and cost-effective multifunctional separator for high-performance lithium-sulfur batteries. Nano Energy, 2019, 59, 390-398.	8.2	96
57	Engineering Energy Level of Metal Center: Ru Single-Atom Site for Efficient and Durable Oxygen Reduction Catalysis. Journal of the American Chemical Society, 2019, 141, 19800-19806.	6.6	288
58	In-situ ion-activated carbon nanospheres with tunable ultramicroporosity for superior CO2 capture. Carbon, 2019, 143, 531-541.	5.4	96
59	Revisiting the Role of Polysulfides in Lithium–Sulfur Batteries. Advanced Materials, 2018, 30, e1705590.	11.1	456
60	Two-Dimensional Phosphorus-Doped Carbon Nanosheets with Tunable Porosity for Oxygen Reactions in Zinc-Air Batteries. ACS Catalysis, 2018, 8, 2464-2472.	5.5	175
61	Metal/Graphene Composites with Strong Metal–S Bondings for Sulfur Immobilization in Li–S Batteries. Journal of Physical Chemistry C, 2018, 122, 3263-3272.	1.5	36
62	Lithium-Sulfur Batteries for Commercial Applications. CheM, 2018, 4, 3-7.	5.8	174
63	Fabrication of oriented-macroporous-carbon incorporated with γ-Al2O3 for high performance lithium-sulfur battery. Microporous and Mesoporous Materials, 2018, 266, 276-282.	2.2	19
64	In Situ Synthesis of Li ₂ Sâ€Loaded amphiphilic Porous Carbon and Modification of the Li ₂ S Electrode for Longâ€Life Li ₂ S Batteries. ChemElectroChem, 2018, 5, 112-118.	1.7	12
65	3D Porous Carbon Sheets with Multidirectional Ion Pathways for Fast and Durable Lithium–Sulfur Batteries. Advanced Energy Materials, 2018, 8, 1702381.	10.2	165
66	Conductive Nanocrystalline Niobium Carbide as Highâ€Efficiency Polysulfides Tamer for Lithiumâ€Sulfur Batteries. Advanced Functional Materials, 2018, 28, 1704865.	7.8	210
67	2D molybdenum nitride nanosheets as anode materials for improved lithium storage. Nanoscale, 2018, 10, 18936-18941.	2.8	61
68	The Dualâ€Play of 3D Conductive Scaffold Embedded with Co, N Codoped Hollow Polyhedra toward Highâ€Performance Li–S Full Cell. Advanced Energy Materials, 2018, 8, 1802561.	10.2	114
69	Recessed deposition of TiN into N-doped carbon as a cathode host for superior Li-S batteries performance. Nano Energy, 2018, 54, 1-9.	8.2	103
70	Stringed "tube on cube―nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–sulfur batteries. Energy and Environmental Science, 2018, 11, 2372-2381.	15.6	255
71	A novel class of functional additives for cyclability enhancement of the sulfur cathode in lithium sulfur batteries. Inorganic Chemistry Frontiers, 2018, 5, 2013-2017.	3.0	13
72	Conductive molybdenum carbide as the polysulfide reservoir for lithium–sulfur batteries. Journal of Materials Chemistry A, 2018, 6, 17142-17147.	5.2	37

#	Article	IF	CITATIONS
73	Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chemical Reviews, 2018, 118, 8936-8982.	23.0	575
74	Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium–sulfur batteries. Nature Communications, 2017, 8, 14628.	5.8	436
75	A facile self-templating synthesis of carbon frameworks with tailored hierarchical porosity for enhanced energy storage performance. Chemical Communications, 2017, 53, 5028-5031.	2.2	9
76	A novel strategy for high-stability lithium sulfur batteries by in situ formation of polysulfide adsorptive-blocking layer. Journal of Power Sources, 2017, 355, 147-153.	4.0	30
77	CNT-threaded N-doped porous carbon film as binder-free electrode for high-capacity supercapacitor and Li–S battery. Journal of Materials Chemistry A, 2017, 5, 9775-9784.	5.2	115
78	Flexible and Binder-Free Hierarchical Porous Carbon Film for Supercapacitor Electrodes Derived from MOFs/CNT. ACS Applied Materials & amp; Interfaces, 2017, 9, 14043-14050.	4.0	167
79	Strings of Porous Carbon Polyhedrons as Selfâ€5tanding Cathode Host for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Angewandte Chemie, 2017, 129, 6272-6276.	1.6	37
80	Strings of Porous Carbon Polyhedrons as Selfâ€Standing Cathode Host for Highâ€Energyâ€Density Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2017, 56, 6176-6180.	7.2	153
81	Tuning Shell Numbers of Transition Metal Oxide Hollow Microspheres toward Durable and Superior Lithium Storage. ACS Nano, 2017, 11, 11521-11530.	7.3	88
82	Highly Nitrogen-Doped Three-Dimensional Carbon Fibers Network with Superior Sodium Storage Capacity. ACS Applied Materials & Interfaces, 2017, 9, 28604-28611.	4.0	38
83	A facile and scalable method to prepare carbon nanotube-grafted-graphene for high performance Li-S battery. Journal of Power Sources, 2017, 339, 20-26.	4.0	54
84	B,N-Co-doped Graphene Supported Sulfur for Superior Stable Li–S Half Cell and Ge–S Full Battery. ACS Applied Materials & Interfaces, 2016, 8, 27679-27687.	4.0	56
85	The dual actions of modified polybenzimidazole in taming the polysulfide shuttle for long-life lithium–sulfur batteries. NPG Asia Materials, 2016, 8, e317-e317.	3.8	54
86	A scalable in situ surfactant-free synthesis of a uniform MnO/graphene composite for highly reversible lithium storage. Dalton Transactions, 2016, 45, 19221-19225.	1.6	12
87	Porous Carbon as Anode Catalyst Support to Improve Borohydride Utilization in a Direct Borohydride Fuel Cell. Fuel Cells, 2015, 15, 270-277.	1.5	22
88	<i>Acacia Senegal</i> –Inspired Bifunctional Binder for Longevity of Lithium–Sulfur Batteries. Advanced Energy Materials, 2015, 5, 1500878.	10.2	223
89	TiO ₂ Microboxes with Controlled Internal Porosity for Highâ€Performance Lithium Storage. Angewandte Chemie - International Edition, 2015, 54, 14331-14335.	7.2	75
90	A multi functional binder with lithium ion conductive polymer and polysulfide absorbents to improve cycleability of lithium–sulfur batteries. Journal of Power Sources, 2015, 294, 187-192.	4.0	85

#	Article	IF	CITATIONS
91	A novel laminated separator with multi functions for high-rate dischargeable lithium–sulfur batteries. Journal of Power Sources, 2015, 283, 524-529.	4.0	60
92	Developments of Electrolyte Systems for Lithiumââ,¬â€œSulfur Batteries: A Review. Frontiers in Energy Research, 2015, 3, .	1.2	36
93	Carbon-coated titanium dioxide micro-bowls as an anode material for Li-ion batteries. Electrochimica Acta, 2014, 125, 199-205.	2.6	12
94	Hydrogen generation from borohydride hydrolysis on surface-alloyed Ni foam. Journal of Power Sources, 2013, 242, 621-626.	4.0	8