Daniel Rentsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862623/publications.pdf

Version: 2024-02-01

76294 85498 5,564 113 40 71 citations h-index g-index papers 117 117 117 7913 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Effect of an Al2O3-based binder on the structure of extruded Fe-ZSM-5. Catalysis Today, 2022, 387, 207-215.	2.2	2
2	Water/Ionic Liquid/Succinonitrile Hybrid Electrolytes for Aqueous Batteries. Advanced Functional Materials, 2022, 32, .	7.8	11
3	Influence of sodium nitrate on the phases formed in the MgO-Al2O3-SiO2-H2O system. Materials and Design, 2021, 198, 109391.	3.3	13
4	<i>Nido</i> â€Hydroborateâ€Based Electrolytes for Allâ€Solidâ€State Lithium Batteries. Advanced Functional Materials, 2021, 31, 2010046.	7.8	37
5	Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices. Science and Technology of Advanced Materials, 2021, 22, 194-204.	2.8	15
6	The Hydrotropic Effect of Ionic Liquids in Waterâ€inâ€Salt Electrolytes**. Angewandte Chemie, 2021, 133, 14219-14227.	1.6	1
7	Ureido Functionalization through Amine-Urea Transamidation under Mild Reaction Conditions. Polymers, 2021, 13, 1583.	2.0	4
8	The Hydrotropic Effect of Ionic Liquids in Waterâ€inâ€Salt Electrolytes**. Angewandte Chemie - International Edition, 2021, 60, 14100-14108.	7.2	45
9	Tailoring the hydrophobicity of wrinkled silica nanoparticles and of the adsorption medium as a strategy for immobilizing lipase: An efficient catalyst for biofuel production. Microporous and Mesoporous Materials, 2021, 328, 111504.	2.2	12
10	Thermal and Electrochemical Interface Compatibility of a Hydroborate Solid Electrolyte with 3 V-Class Cathodes for All-Solid-State Sodium Batteries. ACS Applied Materials & Interfaces, 2021, 13, 55319-55328.	4.0	7
11	Phase transfer agents facilitate the production of superinsulating silica aerogel powders by simultaneous hydrophobization and solvent- and ion-exchange. Chemical Engineering Journal, 2020, 381, 122421.	6.6	19
12	Aluminum incorporation into magnesium silicate hydrate (M-S-H). Cement and Concrete Research, 2020, 128, 105931.	4.6	60
13	<i>Nido</i> -Borate/ <i>Closo</i> -Borate Mixed-Anion Electrolytes for All-Solid-State Batteries. Chemistry of Materials, 2020, 32, 1101-1110.	3.2	44
14	Biotransformation Changes Bioaccumulation and Toxicity of Diclofenac in Aquatic Organisms. Environmental Science & Environment	4.6	91
15	Structurally Tunable pH-responsive Phosphine Oxide Based Gels by Facile Synthesis Strategy. ACS Applied Materials & Strategy. ACS Applied Materials & Strategy. ACS	4.0	9
16	Ruthenium on phosphorous-modified alumina as an effective and stable catalyst for catalytic transfer hydrogenation of furfural. RSC Advances, 2020, 10, 11507-11516.	1.7	15
17	Reactions of pyrrole, imidazole, and pyrazole with ozone: kinetics and mechanisms. Environmental Science: Water Research and Technology, 2020, 6, 976-992.	1.2	20
18	<i>Aminobacter</i> sp. MSH1 Mineralizes the Groundwater Micropollutant 2,6-Dichlorobenzamide through a Unique Chlorobenzoate Catabolic Pathway. Environmental Science & Eamp; Technology, 2019, 53, 10146-10156.	4.6	11

#	Article	IF	Citations
19	Electrocatalytic Reduction of Gaseous CO ₂ to CO on Sn/Cuâ€Nanofiberâ€Based Gas Diffusion Electrodes. Advanced Energy Materials, 2019, 9, 1901514.	10.2	74
20	Insight into the Synthesis and Characterization of Organophosphorus-Based Bridged Triazine Compounds. Molecules, 2019, 24, 2672.	1.7	13
21	The aspartimide problem persists: Fluorenylmethyloxycarbonylâ€solidâ€phase peptide synthesis (Fmocâ€SPPS) chain termination due to formation of Nâ€terminal piperazineâ€2,5â€diones. Journal of Peptide Science, 2019, 25, e3193.	0.8	13
22	Ambient pressure drying of silica aerogels after hydrophobization with mono-, di- and tri-functional silanes and mixtures thereof. Microporous and Mesoporous Materials, 2019, 284, 289-295.	2.2	31
23	Sn-Decorated Cu for Selective Electrochemical CO ₂ to CO Conversion: Precision Architecture beyond Composition Design. ACS Applied Energy Materials, 2019, 2, 867-872.	2.5	41
24	Effect of SiO2 on co-impregnated V2O5/WO3/TiO2 catalysts for the selective catalytic reduction of NO with NH3. Catalysis Today, 2019, 320, 123-132.	2.2	21
25	One-Dimensional Organic–Inorganic Hybrid Perovskite Incorporating Near-Infrared-Absorbing Cyanine Cations. Journal of Physical Chemistry Letters, 2018, 9, 2438-2442.	2.1	22
26	Enzymatic Synthesis of Ligninâ€Based Concrete Dispersing Agents. ChemBioChem, 2018, 19, 1365-1369.	1.3	6
27	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie, 2018, 130, 2377-2380.	1.6	7
28	Allâ€inâ€One Cellulose Nanocrystals for 3D Printing of Nanocomposite Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 2353-2356.	7.2	89
29	Isolation of the (+)-Pinoresinol-Mineralizing Pseudomonas sp. Strain SG-MS2 and Elucidation of Its Catabolic Pathway. Applied and Environmental Microbiology, 2018, 84, .	1.4	15
30	Dynamics of the Coordination Complexes in a Solid-State Mg Electrolyte. Journal of Physical Chemistry Letters, 2018, 9, 6450-6455.	2.1	36
31	Some Key Factors Influencing the Flame Retardancy of EDA-DOPO Containing Flexible Polyurethane Foams. Polymers, 2018, 10, 1115.	2.0	23
32	One-Pot Synthesis of P(O)-N Containing Compounds Using N-Chlorosuccinimide and Their Influence in Thermal Decomposition of PU Foams. Polymers, 2018, 10, 740.	2.0	14
33	Advanced Cu-Sn foam for selectively converting CO2 to CO in aqueous solution. Applied Catalysis B: Environmental, 2018, 236, 475-482.	10.8	118
34	Wavelength-Selective Light-Responsive DASA-Functionalized Polymersome Nanoreactors. Journal of the American Chemical Society, 2018, 140, 8027-8036.	6.6	137
35	Direct Rehydrogenation of LiBH4 from H-Deficient Li2B12H12â^'x. Crystals, 2018, 8, 131.	1.0	10
36	Diastereoselective self-assembly of bisheptahelicene on Cu(111). Chemical Communications, 2018, 54, 8757-8760.	2.2	13

#	Article	IF	CITATIONS
37	Spectroscopic elucidation of structure-property relations in filaments melt-spun from amorphous polymers. European Polymer Journal, 2017, 89, 78-87.	2.6	8
38	Formation of magnesium silicate hydrates (M-S-H). Physics and Chemistry of the Earth, 2017, 99, 142-157.	1.2	114
39	Thermal decomposition and flammability of rigid PU foams containing some DOPO derivatives and other phosphorus compounds. Journal of Analytical and Applied Pyrolysis, 2017, 124, 219-229.	2.6	81
40	Abatement of Polychoro-1,3-butadienes in Aqueous Solution by Ozone, UV Photolysis, and Advanced Oxidation Processes (O ₃ /H ₂ O ₂ and) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5	50 &1 & Td	(Uなけ ≺sub>2
41	A Lithium Amideâ€Borohydride Solidâ€State Electrolyte with Lithiumâ€Ion Conductivities Comparable to Liquid Electrolytes. Advanced Energy Materials, 2017, 7, 1700294.	10.2	95
42	A highly stable sodium solid-state electrolyte based on a dodeca/deca-borate equimolar mixture. Chemical Communications, 2017, 53, 4195-4198.	2.2	137
43	Controllable decomposition of Ca(BH ₄) ₂ for reversible hydrogen storage. Physical Chemistry Chemical Physics, 2017, 19, 7788-7792.	1.3	12
44	Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems. Applied Energy, 2017, 205, 964-975.	5.1	38
45	Synthesis, stability and Li-ion mobility of nanoconfined Li ₂ B ₁₂ H ₁₂ . Dalton Transactions, 2017, 46, 12434-12437.	1.6	18
46	On the reversible hydrogen storage in Mg(BH4)2 under moderate conditions. , 2016, , .		1
47	Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 2016, 27, 179-193.	1.5	39
48	2,2′:6′,2′′-Terpyridine-functionalized redox-responsive hydrogels as a platform for multi responsive amphiphilic polymer membranes. RSC Advances, 2016, 6, 97921-97930.	1.7	11
49	A novel method for the synthesis of solvent-free Mg(B ₃ H ₈) ₂ . Dalton Transactions, 2016, 45, 3687-3690.	1.6	35
50	Systematic Exploration of Biotransformation Reactions of Amine-Containing Micropollutants in Activated Sludge. Environmental Science & Environmental S	4.6	111
51	Synthesis of new bis(acyl)phosphane oxide photoinitiators for the surface functionalization of cellulose nanocrystals. Chemical Communications, 2016, 52, 2823-2826.	2.2	53
52	Structural Modification of Ni/γâ€Al ₂ O ₃ with Boron for Enhanced Carbon Resistance during CO Methanation. ChemCatChem, 2015, 7, 3261-3265.	1.8	11
53	Controlled Silylation of Nanofibrillated Cellulose in Water: Reinforcement of a Model Polydimethylsiloxane Network. ChemSusChem, 2015, 8, 2681-2690.	3.6	57
54	A novel strategy for reversible hydrogen storage in Ca(BH4)2. Chemical Communications, 2015, 51, 11008-11011.	2.2	39

#	Article	IF	CITATIONS
55	Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C ₆₀ bilayer solar cells. Science and Technology of Advanced Materials, 2015, 16, 035003.	2.8	10
56	Physico-chemical properties of the new generation IV iron preparations ferumoxytol, iron isomaltoside 1000 and ferric carboxymaltose. BioMetals, 2015, 28, 615-635.	1.8	64
57	Surface Chemistry of Hydrophobic Silica Aerogels. Chemistry of Materials, 2015, 27, 6737-6745.	3.2	100
58	The role of MgB ₁₂ H ₁₂ in the hydrogen desorption process of Mg(BH ₄) ₂ . Chemical Communications, 2015, 51, 700-702.	2.2	53
59	Unsymmetrical Heptamethine Dyes for NIR Dye-Sensitized Solar Cells. International Journal of Photoenergy, 2014, 2014, 1-10.	1.4	9
60	Ultralightweight and Flexible Silylated Nanocellulose Sponges for the Selective Removal of Oil from Water. Chemistry of Materials, 2014, 26, 2659-2668.	3.2	511
61	NMR Chemical Shifts of $\langle \sup 11 \rangle$ sup $\langle B \mid M \rangle$ in Metal Borohydrides from First-Principle Calculations. Journal of Physical Chemistry C, 2014, 118, 6594-6603.	1.5	30
62	Diyne-Functionalized Fullerene Self-Assembly for Thin Film Solid-State Polymerization. Macromolecules, 2014, 47, 721-728.	2.2	28
63	Solvent-free synthesis and stability of MgB ₁₂ H ₁₂ . Journal of Materials Chemistry A, 2014, 2, 7244-7249.	5.2	41
64	Synthesis of DOPO-Based Phosphonamidates and their Thermal Properties. Industrial & Engineering Chemistry Research, 2014, 53, 2889-2896.	1.8	106
65	Hydration of a silica fume blended low-alkali shotcrete cement. Physics and Chemistry of the Earth, 2014, 70-71, 3-16.	1.2	80
66	Bridged DOPO derivatives as flame retardants for PA6. Polymer Degradation and Stability, 2014, 107, 158-165.	2.7	125
67	Cyanine dye polyelectrolytes for organic bilayer solar cells. Polymer, 2014, 55, 3195-3201.	1.8	7
68	Reversible hydrogen storage in Mg(BH4)2/carbon nanocomposites. Journal of Materials Chemistry A, 2013, 1, 11177.	5.2	57
69	Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3?. Chemical Communications, 2013, 49, 5234.	2.2	33
70	Identification and dynamic modeling of biomarkers for bacterial uptake and effect of sulfonamide antimicrobials. Environmental Pollution, 2013, 172, 208-215.	3.7	10
71	The impact of aging environment on the evolution of Al2O3 supported Pt nanoparticles and their NO oxidation activity. Applied Catalysis B: Environmental, 2013, 129, 214-224.	10.8	45
72	Controlling the Dehydrogenation Reaction toward Reversibility of the LiBH ₄ â€"Ca(BH ₄) ₂ Eutectic System. Journal of Physical Chemistry C, 2013, 117, 8878-8886.	1.5	20

#	Article	IF	Citations
73	Enantioselective Dehydrochlorination of $\hat{\Gamma}$ -Hexachlorocyclohexane and $\hat{\Gamma}$ -Pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Applied and Environmental Microbiology, 2013, 79, 6180-6183.	1.4	8
74	Quantitative Assessment of Preloaded 4-Alkoxybenzyl Alcohol Resins for Solid-Phase Peptide Syntheses by 1D and 2D HR-MAS NMR. ACS Combinatorial Science, 2012, 14, 613-620.	3.8	6
75	Reactions of a Sulfonamide Antimicrobial with Model Humic Constituents: Assessing Pathways and Stability of Covalent Bonding. Environmental Science &	4.6	48
76	Enzymatic Conversion of ε-Hexachlorocyclohexane and a Heptachlorocyclohexane Isomer, Two Neglected Components of Technical Hexachlorocyclohexane. Environmental Science & Technology, 2012, 46, 4051-4058.	4.6	35
77	Carbon-substituted 9,12-dimercapto-1,2-dicarba-closo-dodecaboranes via a 9,12-bis(methoxy-methylthio)-1,2-dicarba-closo-dodecaborane precursor. Polyhedron, 2012, 45, 144-151.	1.0	7
78	Crystal Structures of BapA Complexes with βâ€Lactamâ€Derived Inhibitors Illustrate Substrate Specificity and Enantioselectivity of βâ€Aminopeptidases. ChemBioChem, 2012, 13, 2137-2145.	1.3	5
79	Thermal and chemical aging of model three-way catalyst Pd/Al2O3 and its impact on the conversion of CNG vehicle exhaust. Catalysis Today, 2012, 184, 237-244.	2.2	75
80	Alkali-Silica Reaction: the Influence of Calcium on Silica Dissolution and the Formation of Reaction Products. Journal of the American Ceramic Society, 2011, 94, 1243-1249.	1.9	129
81	Crystal-chemistry of mullite-type aluminoborates Al18B4O33 and Al5BO9: A stoichiometry puzzle. Journal of Solid State Chemistry, 2011, 184, 70-80.	1.4	43
82	Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose, 2010, 17, 19-30.	2.4	254
83	Hydrogenation of 9-ethylcarbazole as a prototype of a liquid hydrogen carrier. International Journal of Hydrogen Energy, 2010, 35, 11609-11621.	3.8	135
84	The Missing Link in Linear Alkylbenzenesulfonate Surfactant Degradation: 4-Sulfoacetophenone as a Transient Intermediate in the Degradation of 3-(4-Sulfophenyl)Butyrate by <i>Comamonas testosteroni</i> KF-1. Applied and Environmental Microbiology, 2010, 76, 196-202.	1.4	14
85	Transformation of \hat{l}^2 -Lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Emp; Technology, 2010, 44, 5940-5948.	4.6	92
86	Transformation of \hat{l}^2 -lactam Antibacterial Agents during Aqueous Ozonation: Reaction Pathways and Quantitative Bioassay of Biologically-Active Oxidation Products. Environmental Science & Emp; Technology, 2010, 44, 8790-8790.	4.6	6
87	Crystallization of an Aromatic Biopolyester. Macromolecules, 2009, 42, 6322-6326.	2.2	10
88	Synthesis and NMR Spectroscopic Characterization of Organometallics in the Laboratory of Wolfgang von Philipsborn: Reminiscences of Former Graduate Students. Chimia, 2009, 63, 568-572.	0.3	1
89	A simple HPLCâ€MS method for the quantitative determination of the composition of bacterial medium chainâ€length polyhydroxyalkanoates. Journal of Separation Science, 2008, 31, 1739-1744.	1.3	15
90	A thermodynamic and experimental study of the conditions of thaumasite formation. Cement and Concrete Research, 2008, 38, 337-349.	4.6	143

#	Article	IF	CITATIONS
91	Isomer-Specific Degradation and Endocrine Disrupting Activity of Nonylphenols. Environmental Science &	4.6	107
92	New Metabolites in the Degradation of \hat{l}_{\pm} - and \hat{l}_{3} -Hexachlorocyclohexane (HCH): Pentachlorocyclohexenes Are Hydroxylated to Cyclohexenols and Cyclohexenediols by the Haloalkane Dehalogenase LinB from Sphingobium indicum B90A. Journal of Agricultural and Food Chemistry, 2008, 56, 6594-6603.	2.4	41
93	Hydroxylated Metabolites of \hat{l}^2 - and \hat{l} -Hexachlorocyclohexane: \hat{A} Bacterial Formation, Stereochemical Configuration, and Occurrence in Groundwater at a Former Production Site. Environmental Science & Environme	4.6	51
94	Efficient Far Red Sensitization of Nanocrystalline TiO ₂ Films by an Unsymmetrical Squaraine Dye. Journal of the American Chemical Society, 2007, 129, 10320-10321.	6.6	497
95	Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study. Macromolecular Chemistry and Physics, 2007, 208, 277-286.	1.1	68
96	Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. Journal of Chromatography A, 2007, 1143, 199-206.	1.8	54
97	Metabolites and dead-end products from the microbial oxidation of quaternary ammonium alcohols. Biodegradation, 2005, 16, 461-473.	1.5	13
98	A Novel Metabolic Pathway for Degradation of 4-Nonylphenol Environmental Contaminants by Sphingomonas xenophaga Bayram. Journal of Biological Chemistry, 2005, 280, 15526-15533.	1.6	87
99	Gasoline composition determined by 1H NMR spectroscopy. Fuel, 2004, 83, 187-193.	3.4	83
100	Improved reproducibility of chemical reactions on purified polystyrene resins monitored by 31P MAS NMR. Tetrahedron Letters, 2003, 44, 6987-6990.	0.7	4
101	Quantitative Determination of Loadings and Oxidation Products of Polystyrene-Bound Phosphines Using 31P MAS NMR. ACS Combinatorial Science, 2003, 5, 610-616.	3.3	7
102	Quantitative Determination of Resin Loading in Solid-Phase Organic Synthesis Using 13C MAS NMR. ACS Combinatorial Science, 2001, 3, 85-89.	3.3	31
103	Glycosylmanganese pentacarbonyl complexes: an organomanganese-based approach to the synthesis of C-glycosyl derivatives. Journal of Organometallic Chemistry, 2000, 593-594, 49-62.	0.8	14
104	Characterization of New Bacterial Copolyesters Containing 3-Hydroxyoxoalkanoates and Acetoxy-3-hydroxyalkanoates. Macromolecules, 2000, 33, 8571-8575.	2.2	13
105	Comment on Influence of the Chemical Environment on Metolachlor Conformations. Journal of Agricultural and Food Chemistry, 2000, 48, 4448-4449.	2.4	4
106	Sulfonic and Oxanilic Acid Metabolites of Acetanilide Herbicides:Â Separation of Diastereomers and Enantiomers by Capillary Zone Electrophoresis and Identification by1H NMR Spectroscopy. Environmental Science & Environment	4.6	39
107	13C,17O and55Mn NMR studies on substituted manganese carbonyl complexes. A contribution to the mechanism of demetalation reactions. Magnetic Resonance in Chemistry, 1998, 36, S54-S60.	1.1	24
108	Transition Metal NMR Spectroscopy.55Mn,13CO and55Mn,31P coupling constants of organomanganese complexes: comparison of NMR results from experiments in solution and in the solid state. Magnetic Resonance in Chemistry, 1997, 35, 832-838.	1.1	22

#	Article	IF	CITATIONS
109	Lignans, alkaloids and coumarins from Haplophyllum vulcanicum. Phytochemistry, 1996, 42, 695-699.	1.4	20
110	One-Bond55Mn,13C Coupling Constants, a Correction. Magnetic Resonance in Chemistry, 1996, 34, 955-957.	1.1	3
111	55Mn,13C coupling constants of some if - and $i\in$ -organomanganese complexes. Magnetic Resonance in Chemistry, 1994, 32, 348-352.	1.1	8
112	Probing the chemistry of organomanganese complexes. a kinetic study of the role of coordinate bonds in a demetalation reaction Tetrahedron, 1993, 49, 5673-5682.	1.0	7
113	Resolution of [(η4-benzylideneacetone)Fe(CO)3]. Structure and configurational stability of [(pS)-(benzylideneacetone)Fe(CO)2Lâ~] (Lâ~ î—» (+)-neomenthyldiphenylphosphine). Journal of Organometa Chemistry, 1992, 429, 87-97.	llico.8	14