William Sproviero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862610/publications.pdf

Version: 2024-02-01

361413 454955 2,140 31 20 30 citations h-index g-index papers 34 34 34 4131 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1043-1048.	21.4	494
2	Detection of long repeat expansions from PCR-free whole-genome sequence data. Genome Research, 2017, 27, 1895-1903.	5 . 5	277
3	NEK1 variants confer susceptibility to amyotrophic lateral sclerosis. Nature Genetics, 2016, 48, 1037-1042.	21.4	218
4	The multistep hypothesis of ALS revisited. Neurology, 2018, 91, e635-e642.	1.1	146
5	Project MinE: study design and pilot analyses of a large-scale whole-genome sequencing study in amyotrophic lateral sclerosis. European Journal of Human Genetics, 2018, 26, 1537-1546.	2.8	129
6	ATXN2 trinucleotide repeat length correlates with risk of ALS. Neurobiology of Aging, 2017, 51, 178.e1-178.e9.	3.1	86
7	Meta-analysis of pharmacogenetic interactions in amyotrophic lateral sclerosis clinical trials. Neurology, 2017, 89, 1915-1922.	1.1	82
8	C9orf72 intermediate expansions of 24–30 repeats are associated with ALS. Acta Neuropathologica Communications, 2019, 7, 115.	5. 2	75
9	A comprehensive analysis of rare genetic variation in amyotrophic lateral sclerosis in the UK. Brain, 2017, 140, 1611-1618.	7.6	71
10	Ataxin-1 and ataxin-2 intermediate-length PolyQ expansions in amyotrophic lateral sclerosis. Neurology, 2012, 79, 2315-2320.	1.1	70
11	Association of a Locus in the <i>CAMTA1 < /i>Gene With Survival in Patients With Sporadic Amyotrophic Lateral Sclerosis. JAMA Neurology, 2016, 73, 812.</i>	9.0	57
12	Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics. Cell Reports, 2020, 33, 108323.	6.4	41
13	High Blood Pressure and Risk of Dementia: A Two-Sample Mendelian Randomization Study in the UK Biobank. Biological Psychiatry, 2021, 89, 817-824.	1.3	35
14	<i>ATXN1</i> repeat expansions confer risk for amyotrophic lateral sclerosis and contribute to TDP-43 mislocalization. Brain Communications, 2020, 2, fcaa064.	3.3	33
15	FUS mutations in sporadic amyotrophic lateral sclerosis: Clinical and genetic analysis. Neurobiology of Aging, 2012, 33, 837.e1-837.e5.	3.1	32
16	Investigation of next-generation sequencing technologies as a diagnostic tool for amyotrophic lateral sclerosis. Neurobiology of Aging, 2015, 36, 1600.e5-1600.e8.	3.1	32
17	Lipidomic traits of plasma and cerebrospinal fluid in amyotrophic lateral sclerosis correlate with disease progression. Brain Communications, 2021, 3, fcab143.	3.3	29
18	Association of NIPA1 repeat expansions with amyotrophic lateral sclerosis in a large international cohort. Neurobiology of Aging, 2019, 74, 234.e9-234.e15.	3.1	26

#	Article	IF	Citations
19	Targeted Genetic Screen in Amyotrophic Lateral Sclerosis Reveals Novel Genetic Variants with Synergistic Effect on Clinical Phenotype. Frontiers in Molecular Neuroscience, 2017, 10, 370.	2.9	24
20	<i>CHCHD10</i> variants in amyotrophic lateral sclerosis: Where is the evidence?. Annals of Neurology, 2018, 84, 110-116.	5.3	24
21	Residual association at C9orf72 suggests an alternative amyotrophic lateral sclerosis-causing hexanucleotide repeat. Neurobiology of Aging, 2013, 34, 2234.e1-2234.e7.	3.1	22
22	Rare genetic variation in UNC13A may modify survival in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2016, 17, 593-599.	1.7	22
23	Identification of new risk factors for rolandic epilepsy: CNV at Xp22.31 and alterations at cholinergic synapses. Journal of Medical Genetics, 2018, 55, 607-616.	3.2	22
24	Associations Between Brain Volumes and Cognitive Tests with Hypertensive Burden in UK Biobank. Journal of Alzheimer's Disease, 2021, 84, 1373-1389.	2.6	19
25	Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 229-234.	1.7	18
26	Opioid use, postoperative complications, and implant survival after unicompartmental versus total knee replacement: a population-based network study. Lancet Rheumatology, The, 2019, 1, e229-e236.	3.9	18
27	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	14.8	16
28	ALSgeneScanner: a pipeline for the analysis and interpretation of DNA sequencing data of ALS patients. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2019, 20, 207-215.	1.7	11
29	The p.Arg416Cys mutation in SPG3a gene associated with a pure form of spastic paraplegia. Muscle and Nerve, 2012, 45, 919-920.	2.2	5
30	A novel NF1 gene mutation in an Italian family with neurofibromatosis type 1. Child's Nervous System, 2011, 27, 635-638.	1.1	4
31	SMN1 gene copy number analyses for SMA healthy carriers in Italian population. Journal of Pediatric Genetics, 2012, 1, 99-102.	0.7	O