Wanjun Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862259/publications.pdf Version: 2024-02-01

		27035	15698
134	19,341	58	129
papers	citations	h-index	g-index
137	137	137	29521
all docs	docs citations	times ranked	citing authors

WANDEN CHEN

#	Article	IF	CITATIONS
1	Modulation of Macrophage Immunometabolism: A New Approach to Fight Infections. Frontiers in Immunology, 2022, 13, 780839.	2.2	37
2	TGF-Î ² and Cancer Immunotherapy. Biological and Pharmaceutical Bulletin, 2022, 45, 155-161.	0.6	20
3	BMPR1a Is Required for the Optimal TGFβ1-Dependent CD207+ Langerhans Cell Differentiation and Limits Skin Inflammation through CD11c+ Cells. Journal of Investigative Dermatology, 2022, 142, 2446-2454.e3.	0.3	3
4	Programmed cell death 4 as an endogenous suppressor of BDNF translation is involved in stress-induced depression. Molecular Psychiatry, 2021, 26, 2316-2333.	4.1	28
5	Modular immune-homeostatic microparticles promote immune tolerance in mouse autoimmune models. Science Translational Medicine, 2021, 13, .	5.8	24
6	Adipose-mesenchymal stromal cells suppress experimental Sjögren syndrome by IL-33-driven expansion of ST2+ regulatory TÂcells. IScience, 2021, 24, 102446.	1.9	6
7	T _{reg} deficiencyâ€mediated T _H 1 response causes human premature ovarian insufficiency through apoptosis and steroidogenesis dysfunction of granulosa cells. Clinical and Translational Medicine, 2021, 11, e448.	1.7	27
8	The Curcumin Analog GO-Y030 Controls the Generation and Stability of Regulatory T Cells. Frontiers in Immunology, 2021, 12, 687669.	2.2	16
9	B cell residency but not T cell–independent IgA switching in the gut requires innate lymphoid cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	10
10	Induction of antigen-specific Treg cells in treating autoimmune uveitis via bystander suppressive pathways without compromising anti-tumor immunity. EBioMedicine, 2021, 70, 103496.	2.7	6
11	Curcumin analog GO‥030 boosts the efficacy of antiâ€₽Dâ€1 cancer immunotherapy. Cancer Science, 2021, 112, 4844-4852.	1.7	21
12	Prestimulation of CD2 confers resistance to HIV-1 latent infection in blood resting CD4 TÂcells. IScience, 2021, 24, 103305.	1.9	1
13	Editorial: Hexose Uptake and Metabolism in Immune Homeostasis and Inflammation. Frontiers in Immunology, 2021, 12, 832293.	2.2	1
14	TGF-Î ² induces ST2 and programs ILC2 development. Nature Communications, 2020, 11, 35.	5.8	43
15	Arf1-mediated lipid metabolism sustains cancer cells and its ablation induces anti-tumor immune responses in mice. Nature Communications, 2020, 11, 220.	5.8	59
16	The Cytokine TGF-β Induces Interleukin-31 Expression from Dermal Dendritic Cells to Activate Sensory Neurons and Stimulate Wound Itching. Immunity, 2020, 53, 371-383.e5.	6.6	65
17	Beneficial Effect of Antibiotics and Microbial Metabolites on Expanded Vδ2Vγ9 T Cells in Hepatocellular Carcinoma Immunotherapy. Frontiers in Immunology, 2020, 11, 1380.	2.2	18
18	ldentification and Regulation of TCRαβ+CD8αα+ Intraepithelial Lymphocytes in Murine Oral Mucosa. Frontiers in Immunology, 2020, 11, 1702.	2.2	3

#	Article	IF	CITATIONS
19	Lipocalin-2 Exacerbates Lupus Nephritis by Promoting Th1 Cell Differentiation. Journal of the American Society of Nephrology: JASN, 2020, 31, 2263-2277.	3.0	23
20	A potential treatment of COVID-19 with TGF-β blockade. International Journal of Biological Sciences, 2020, 16, 1954-1955.	2.6	118
21	Type I Interferon Therapy Limits CNS Autoimmunity by Inhibiting CXCR3-Mediated Trafficking of Pathogenic Effector T Cells. Cell Reports, 2019, 28, 486-497.e4.	2.9	19
22	Clearance of apoptotic cells by mesenchymal stem cells contributes to immunosuppression via PGE2. EBioMedicine, 2019, 45, 341-350.	2.7	56
23	Mesenchymal stem cell transplantation alleviates experimental Sjögren's syndrome through IFN-β/IL-27 signaling axis. Theranostics, 2019, 9, 8253-8265.	4.6	42
24	High Glucose Intake Exacerbates Autoimmunity through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity, 2019, 51, 671-681.e5.	6.6	158
25	Mesenchymal stem cell therapy induces FLT3L and CD1c+ dendritic cells in systemic lupus erythematosus patients. Nature Communications, 2019, 10, 2498.	5.8	100
26	Combination of apoptotic T cell induction and self-peptide administration for therapy of experimental autoimmune encephalomyelitis. EBioMedicine, 2019, 44, 50-59.	2.7	8
27	Extracellular Vesicles from Apoptotic Cells Promote TGFβ Production in Macrophages and Suppress Experimental Colitis. Scientific Reports, 2019, 9, 5875.	1.6	33
28	Cofilin hyperactivation in HIV infection and targeting the cofilin pathway using an anti-α ₄ β ₇ integrin antibody. Science Advances, 2019, 5, eaat7911.	4.7	14
29	Interleukin 17A Exacerbates Atherosclerosis by Promoting Fatty Acid-Binding Protein 4–Mediated ER Stress in Macrophages. Circulation Research, 2019, , .	2.0	5
30	MicroRNA-663 induces immune dysregulation by inhibiting TGF-β1 production in bone marrow-derived mesenchymal stem cells in patients with systemic lupus erythematosus. Cellular and Molecular Immunology, 2019, 16, 260-274.	4.8	50
31	T Cell Receptor-Regulated TGF-β Type I Receptor Expression Determines T Cell Quiescence and Activation. Immunity, 2018, 48, 745-759.e6.	6.6	73
32	Oral cancer-derived exosomal NAP1 enhances cytotoxicity of natural killer cells via the IRF-3 pathway. Oral Oncology, 2018, 76, 34-41.	0.8	50
33	Mesenchymal stem cell transplantation ameliorates Sjögren's syndrome via suppressing IL-12 production by dendritic cells. Stem Cell Research and Therapy, 2018, 9, 308.	2.4	39
34	IL-37 isoform D downregulates pro-inflammatory cytokines expression in a Smad3-dependent manner. Cell Death and Disease, 2018, 9, 582.	2.7	39
35	M1-like tumor-associated macrophages activated by exosome-transferred THBS1 promote malignant migration in oral squamous cell carcinoma. Journal of Experimental and Clinical Cancer Research, 2018, 37, 143.	3.5	153
36	Association between Type I interferon and depletion and dysfunction of endothelial progenitor cells in C57BL/6 mice deficient in both apolipoprotein E and Fas ligand. Current Research in Translational Medicine, 2018, 66, 71-82.	1.2	8

Wanjun Chen

#	Article	IF	CITATIONS
37	Mesenchymal Stem Cells Control Complement C5 Activation by Factor H in Lupus Nephritis. EBioMedicine, 2018, 32, 21-30.	2.7	26
38	Transforming Growth Factor-Î ² Signaling in Regulatory T Cells Controls T Helper-17 Cells and Tissue-Specific Immune Responses. Immunity, 2017, 46, 660-674.	6.6	180
39	Anastomosis in the absence of a suprahyoid release following circumferential sleeve resection is feasible in differentiated thyroid carcinoma patients with tracheal invasion. Oncology Letters, 2017, 14, 2822-2830.	0.8	8
40	D-mannose induces regulatory T cells and suppresses immunopathology. Nature Medicine, 2017, 23, 1036-1045.	15.2	153
41	MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nature Immunology, 2017, 18, 1035-1045.	7.0	63
42	Pyogenic Liver Abscess: A Retrospective Study of 105 Cases in an Emergency Department from East China. Journal of Emergency Medicine, 2017, 52, 409-416.	0.3	20
43	Immunoregulation by members of the TGFÎ ² superfamily. Nature Reviews Immunology, 2016, 16, 723-740.	10.6	276
44	Three-dimensional graphene skeletons supported nickel molybdate nanowire composite as novel ultralight electrode for supercapacitors. Materials Letters, 2016, 164, 401-404.	1.3	17
45	Regulatory T cells in cardiovascular diseases. Nature Reviews Cardiology, 2016, 13, 167-179.	6.1	297
46	Allogeneic mesenchymal stem cells inhibited T follicular helper cell generation in rheumatoid arthritis. Scientific Reports, 2015, 5, 12777.	1.6	65
47	Apoptotic cell-linked immunoregulation: implications for promoting immune tolerance in transplantation. Cell and Bioscience, 2015, 5, 27.	2.1	11
48	Leptin and Neutrophilâ€Activating Peptide 2 Promote Mesenchymal Stem Cell Senescence Through Activation of the Phosphatidylinositol 3â€Kinase/Akt Pathway in Patients With Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2015, 67, 2383-2393.	2.9	48
49	miR-21 Modulates the Immunoregulatory Function of Bone Marrow Mesenchymal Stem Cells Through the PTEN/Akt/TGF-β1 Pathway. Stem Cells, 2015, 33, 3281-3290.	1.4	49
50	Poly(ADP-ribosyl)ation of FOXP3 Protein Mediated by PARP-1 Protein Regulates the Function of Regulatory T Cells. Journal of Biological Chemistry, 2015, 290, 28675-28682.	1.6	52
51	Control of IFN-γ production and regulatory function by the inducible nuclear protein lκB-ζ in T cells. Journal of Leukocyte Biology, 2015, 98, 385-393.	1.5	16
52	Development of thymic Foxp3 ⁺ regulatory T cells: TGFâ€Î² matters. European Journal of Immunology, 2015, 45, 958-965.	1.6	88
53	Silencing IFN-Î ³ Binding/Signaling in Astrocytes versus Microglia Leads to Opposite Effects on Central Nervous System Autoimmunity. Journal of Immunology, 2015, 194, 4251-4264.	0.4	52
54	Antibiotics in neonatal life increase murine susceptibility to experimental psoriasis. Nature Communications, 2015, 6, 8424.	5.8	135

#	Article	IF	CITATIONS
55	Hydrogen Sulfide Promotes Tet1- and Tet2-Mediated Foxp3 Demethylation to Drive Regulatory T Cell Differentiation and Maintain Immune Homeostasis. Immunity, 2015, 43, 251-263.	6.6	276
56	Mesenchymal stem cells promote CD206 expression and phagocytic activity of macrophages through IL-6 in systemic lupus erythematosus. Clinical Immunology, 2015, 161, 209-216.	1.4	50
57	The DNA-binding inhibitor Id3 regulates IL-9 production in CD4+ T cells. Nature Immunology, 2015, 16, 1077-1084.	7.0	63
58	Manipulating regulatory T cells: a promising strategy to treat autoimmunity. Immunotherapy, 2015, 7, 1201-1211.	1.0	29
59	Facilitated transport channels in carbon nanotube/carbon nanofiber hierarchical composites decorated with manganese dioxide for flexible supercapacitors. Journal of Power Sources, 2015, 274, 709-717.	4.0	79
60	In Vivo–Generated Antigen-Specific Regulatory T Cells Treat Autoimmunity Without Compromising Antibacterial Immune Response. Science Translational Medicine, 2014, 6, 241ra78.	5.8	72
61	A CD8 T Cell/Indoleamine 2,3â€Đioxygenase Axis Is Required for Mesenchymal Stem Cell Suppression of Human Systemic Lupus Erythematosus. Arthritis and Rheumatology, 2014, 66, 2234-2245.	2.9	86
62	Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature, 2014, 507, 513-518.	13.7	303
63	Thymocyte apoptosis drives the intrathymic generation of regulatory T cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E465-73.	3.3	66
64	Impaired B Cell Inhibition by Lupus Bone Marrow Mesenchymal Stem Cells Is Caused by Reduced CCL2 Expression. Journal of Immunology, 2014, 193, 5306-5314.	0.4	71
65	Constructed Uninterrupted Charge-Transfer Pathways in Three-Dimensional Micro/Nanointerconnected Carbon-Based Electrodes for High Energy-Density Ultralight Flexible Supercapacitors. ACS Applied Materials & Interfaces, 2014, 6, 210-218.	4.0	52
66	Synthesis on Winged Graphene Nanofibers and Their Electrochemical Capacitive Performance. ACS Applied Materials & Interfaces, 2014, 6, 14844-14850.	4.0	26
67	TGFβ in T cell biology and tumor immunity: Angel or devil?. Cytokine and Growth Factor Reviews, 2014, 25, 423-435.	3.2	81
68	Ni(OH) ₂ nanosheets grown on a 3D graphene framework as an excellent cathode for flexible supercapacitors. RSC Advances, 2014, 4, 47609-47614.	1.7	26
69	The mucosal immune system in the oral cavity—an orchestra of T cell diversity. International Journal of Oral Science, 2014, 6, 125-132.	3.6	108
70	An overview of carbon materials for flexible electrochemical capacitors. Nanoscale, 2013, 5, 8799.	2.8	278
71	Facilitated charge transport in ternary interconnected electrodes for flexible supercapacitors with excellent power characteristics. Nanoscale, 2013, 5, 11733.	2.8	62
72	Transforming Growth Factor-β3 (TGF-β3) Knock-in Ameliorates Inflammation Due to TGF-β1 Deficiency While Promoting Glucose Tolerance. Journal of Biological Chemistry, 2013, 288, 32074-32092.	1.6	41

#	Article	IF	CITATIONS
73	Regulatory T cells use "ltch―to control asthma. Journal of Clinical Investigation, 2013, 123, 4576-4578.	3.9	8
74	A subset of IL-17+ mesenchymal stem cells possesses anti-Candida albicans effect. Cell Research, 2013, 23, 107-121.	5.7	72
75	Freestanding Three-Dimensional Graphene/MnO ₂ Composite Networks As Ultralight and Flexible Supercapacitor Electrodes. ACS Nano, 2013, 7, 174-182.	7.3	1,336
76	TGF-beta1 on osteoimmunology and the bone component cells. Cell and Bioscience, 2013, 3, 4.	2.1	98
77	Periodontal Ligament Stem Cells Regulate B Lymphocyte Function via Programmed Cell Death Protein 1. Stem Cells, 2013, 31, 1371-1382.	1.4	77
78	Allogeneic Mesenchymal Stem Cell Therapy for Bisphosphonate-Related Jaw Osteonecrosis in Swine. Stem Cells and Development, 2013, 22, 2047-2056.	1.1	58
79	PARP-1 regulates expression of TGF-Î ² receptors in T cells. Blood, 2013, 122, 2224-2232.	0.6	35
80	Allogeneic Mesenchymal Stem Cell Transplantation in Severe and Refractory Systemic Lupus Erythematosus: 4 Years of Experience. Cell Transplantation, 2013, 22, 2267-2277.	1.2	213
81	PARP-1 Controls Immunosuppressive Function of Regulatory T Cells by Destabilizing Foxp3. PLoS ONE, 2013, 8, e71590.	1.1	34
82	Double Allogenic Mesenchymal Stem Cells Transplantations Could Not Enhance Therapeutic Effect Compared with Single Transplantation in Systemic Lupus Erythematosus. Clinical and Developmental Immunology, 2012, 2012, 1-7.	3.3	40
83	Allogeneic mesenchymal stem cell treatment alleviates experimental and clinical Sjögren syndrome. Blood, 2012, 120, 3142-3151.	0.6	238
84	Mesenchymal-Stem-Cell-Induced Immunoregulation Involves FAS-Ligand-/FAS-Mediated T Cell Apoptosis. Cell Stem Cell, 2012, 10, 544-555.	5.2	608
85	A Dichotomy in Cortical Actin and Chemotactic Actin Activity between Human Memory and Naive T Cells Contributes to Their Differential Susceptibility to HIV-1 Infection. Journal of Biological Chemistry, 2012, 287, 35455-35469.	1.6	33
86	TiO2 films with rich bulk oxygen vacancies prepared by electrospinning for dye-sensitized solar cells. Journal of Power Sources, 2012, 214, 244-250.	4.0	54
87	Role of TGF- \hat{I}^2 in Immune Suppression and Inflammation. , 2012, , 289-301.		0
88	IDO: more than an enzyme. Nature Immunology, 2011, 12, 809-811.	7.0	138
89	Balancing acts: the role of TGF-Î ² in the mucosal immune system. Trends in Molecular Medicine, 2011, 17, 668-676.	3.5	128
90	The molecular mechanisms of Foxp3 gene regulation. Seminars in Immunology, 2011, 23, 418-423.	2.7	60

#	Article	IF	CITATIONS
91	Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression. International Journal of Biological Sciences, 2011, 7, 651-658.	2.6	541
92	Control of the differentiation of regulatory T cells and TH17 cells by the DNA-binding inhibitor Id3. Nature Immunology, 2011, 12, 86-95.	7.0	143
93	Control of the development of CD8αα+ intestinal intraepithelial lymphocytes by TGF-β. Nature Immunology, 2011, 12, 312-319.	7.0	134
94	Mesenchymal stem cell–based tissue regeneration is governed by recipient T lymphocytes via IFN-γ and TNF-α. Nature Medicine, 2011, 17, 1594-1601.	15.2	551
95	Tregs in immunotherapy: opportunities and challenges. Immunotherapy, 2011, 3, 911-914.	1.0	27
96	TGF-β–Exposed Plasmacytoid Dendritic Cells Participate in Th17 Commitment. Journal of Immunology, 2011, 186, 6157-6164.	0.4	43
97	Mutation of inhibitory helix-loop-helix protein Id3 causes Î ³ δT-cell lymphoma in mice. Blood, 2010, 116, 5615-5621.	0.6	28
98	Cell-based immunotherapy with mesenchymal stem cells cures bisphosphonate-related osteonecrosis of the jaw–like disease in mice. Journal of Bone and Mineral Research, 2010, 25, 1668-1679.	3.1	182
99	Generation of pathogenic TH17 cells in the absence of TGF-Î ² signalling. Nature, 2010, 467, 967-971.	13.7	1,253
100	Regulatory ripples. Nature Immunology, 2010, 11, 1077-1078.	7.0	29
101	TGF-Â and 'Adaptive' Foxp3+ Regulatory T cells. Journal of Molecular Cell Biology, 2010, 2, 30-36.	1.5	133
102	A Critical Function of Th17 Proinflammatory Cells in the Development of Atherosclerotic Plaque in Mice. Journal of Immunology, 2010, 185, 5820-5827.	0.4	192
103	Reoxygenation of hypoxia-differentiated dentritic cells induces Th1 and Th17 cell differentiation. Molecular Immunology, 2010, 47, 922-931.	1.0	45
104	Progressive Tumor Formation in Mice with Conditional Deletion of TGF-β Signaling in Head and Neck Epithelia Is Associated with Activation of the PI3K/Akt Pathway. Cancer Research, 2009, 69, 5918-5926.	0.4	92
105	Lethal Effect of CD3-Specific Antibody in Mice Deficient in TGF-β1 by Uncontrolled Flu-Like Syndrome. Journal of Immunology, 2009, 183, 953-961.	0.4	12
106	Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy?. Arthritis Research and Therapy, 2009, 11, R104.	1.6	40
107	Mesenchymal stem cell–mediated ectopic hematopoiesis alleviates aging-related phenotype in immunocompromised mice. Blood, 2009, 113, 2595-2604.	0.6	45
108	A critical function for TGF-β signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nature Immunology, 2008, 9, 632-640.	7.0	499

Wanjun Chen

#	Article	IF	CITATIONS
109	CD3-specific antibody–induced immune tolerance involves transforming growth factor-β from phagocytes digesting apoptotic T cells. Nature Medicine, 2008, 14, 528-535.	15.2	230
110	Pharmacologic Stem Cell Based Intervention as a New Approach to Osteoporosis Treatment in Rodents. PLoS ONE, 2008, 3, e2615.	1.1	155
111	TGF-β Regulates Reciprocal Differentiation of CD4 + CD25 + Foxp3 + Regulatory T Cells and IL-17-Producing Th17 Cells from NaÃ⁻ve CD4 + CD25 – T Cells. , 2008, , 111-134.		Ο
112	CD4+CD25+ T Regulatory Cells and TGF-β in Mucosal Immune System: The Good and the Bad. Current Medicinal Chemistry, 2007, 14, 2245-2249.	1.2	23
113	CD11b facilitates the development of peripheral tolerance by suppressing Th17 differentiation. Journal of Experimental Medicine, 2007, 204, 1519-1524.	4.2	143
114	Endogenous TGF-Î ² activation by reactive oxygen species is key to Foxp3 induction in TCR-stimulated and HIV-1-infected human CD4+CD25-T cells. Retrovirology, 2007, 4, 57.	0.9	82
115	Female mice are more susceptible to developing inflammatory disorders due to impaired transforming growth factor β signaling in salivary glands. Arthritis and Rheumatism, 2007, 56, 1798-1805.	6.7	29
116	Dendritic Cells and CD4+CD25+ T Regulatory Cells: Crosstalk Between Two Professionals in Immunity versus Tolerance. Frontiers in Bioscience - Landmark, 2006, 11, 1360.	3.0	56
117	Requirement of CD28 Signaling in Homeostasis/Survival of TGF-β Converted CD4+CD25+ Tregs from Thymic CD4+CD25â^ Single Positive T Cells. Transplantation, 2006, 82, 953-964.	0.5	23
118	Mesenchymal Stem Cell-Organized Bone Marrow Elements: An Alternative Hematopoietic Progenitor Resource. Stem Cells, 2006, 24, 2428-2436.	1.4	59
119	Transforming growth factor-beta-induced regulatory T cells referee inflammatory and autoimmune diseases. Arthritis Research, 2005, 7, 62.	2.0	70
120	TGF-β: the perpetrator of immune suppression by regulatory T cells and suicidal T cells. Journal of Leukocyte Biology, 2004, 76, 15-24.	1.5	157
121	Regulatory T cells and transcription factors: gatekeepers in allergic inflammation. Current Opinion in Immunology, 2004, 16, 768-774.	2.4	35
122	TGF-β: How Tolerant Can It Be?. Immunologic Research, 2003, 28, 167-180.	1.3	37
123	TGF-β: the missing link in CD4+CD25+ regulatory T cell-mediated immunosuppression. Cytokine and Growth Factor Reviews, 2003, 14, 85-89.	3.2	205
124	Conversion of Peripheral CD4+CD25â^' Naive T Cells to CD4+CD25+ Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. Journal of Experimental Medicine, 2003, 198, 1875-1886.	4.2	4,213
125	Transforming Growth Factor-β Production and Myeloid Cells Are an Effector Mechanism through Which CD1d-restricted T Cells Block Cytotoxic T Lymphocyte–mediated Tumor Immunosurveillance. Journal of Experimental Medicine, 2003, 198, 1741-1752.	4.2	508
126	Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002, 21, 3765-3779.	2.6	300

#	Article	IF	CITATIONS
127	TGF-Î ² Released by Apoptotic T Cells Contributes to an Immunosuppressive Milieu. Immunity, 2001, 14, 715-725.	6.6	396
128	Requirement for Transforming Growth Factor β1 in Controlling T Cell Apoptosis. Journal of Experimental Medicine, 2001, 194, 439-454.	4.2	117
129	TGF-β: Receptors, Signaling Pathways and Autoimmunity. , 2001, 5, 62-91.		69
130	TGF-β influences the life and death decisions of T lymphocytes. Cytokine and Growth Factor Reviews, 2000, 11, 71-79.	3.2	67
131	Manipulation of TGF- $\hat{1}^2$ to control autoimmune and chronic inflammatory diseases. Microbes and Infection, 1999, 1, 1367-1380.	1.0	67
132	Engagement of Cytotoxic T Lymphocyte–associated Antigen 4 (CTLA-4) Induces Transforming Growth Factor β (TGF-β) Production by Murine CD4+ T Cells. Journal of Experimental Medicine, 1998, 188, 1849-1857.	4.2	343
133	In VivoMechanisms of Acquired Thymic Tolerance. Cellular Immunology, 1997, 179, 165-173.	1.4	32
134	<i>In vivo</i> generating SSA/Roâ€antigen specific regulatory T cells improves experimental Sjögren's syndrome in mice. Arthritis and Rheumatology, 0, , .	2.9	4