## Craig E L Stark

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6862077/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Impaired Behavioral Pattern Separation in Refractory Temporal Lobe Epilepsy and Mild Cognitive<br>Impairment. Journal of the International Neuropsychological Society, 2022, 28, 550-562.   | 1.8 | 9         |
| 2  | Higher-order multi-shell diffusion measures complement tensor metrics and volume in gray matter when predicting age and cognition. NeuroImage, 2022, 253, 119063.                           | 4.2 | 9         |
| 3  | Adaptive design optimization for a Mnemonic Similarity Task. Journal of Mathematical Psychology, 2022, 108, 102665.                                                                         | 1.8 | 3         |
| 4  | Using Advanced Diffusion-Weighted Imaging to Predict Cell Counts in Gray Matter: Potential and<br>Pitfalls. Frontiers in Neuroscience, 2022, 16, .                                          | 2.8 | 4         |
| 5  | Hippocampal subfield volumetry from structural isotropic 1 mm <sup>3</sup> <scp>MRI</scp> scans: A<br>note of caution. Human Brain Mapping, 2021, 42, 539-550.                              | 3.6 | 84        |
| 6  | Ageâ€related alterations in functional connectivity along the longitudinal axis of the hippocampus and its subfields. Hippocampus, 2021, 31, 11-27.                                         | 1.9 | 26        |
| 7  | Remembering facts versus feelings in the wake of political events. Cognition and Emotion, 2021, 35, 1-20.                                                                                   | 2.0 | 8         |
| 8  | Tacrolimus Protects against Age-Associated Microstructural Changes in the Beagle Brain. Journal of Neuroscience, 2021, 41, 5124-5133.                                                       | 3.6 | 13        |
| 9  | Playing Minecraft Improves Hippocampal-Associated Memory for Details in Middle Aged Adults.<br>Frontiers in Sports and Active Living, 2021, 3, 685286.                                      | 1.8 | 7         |
| 10 | Predicted and remembered emotion: tomorrow's vividness trumps yesterday's accuracy. Memory, 2020,<br>28, 128-140.                                                                           | 1.7 | 7         |
| 11 | Age- and memory- related differences in hippocampal gray matter integrity are better captured by NODDI compared to single-tensor diffusion imaging. Neurobiology of Aging, 2020, 96, 12-21. | 3.1 | 22        |
| 12 | Enriching Hippocampal Memory Function in Older Adults Through Real-World Exploration. Frontiers<br>in Aging Neuroscience, 2020, 12, 158.                                                    | 3.4 | 12        |
| 13 | Neural substrates of mnemonic discrimination: A wholeâ€brain fMRI investigation. Brain and Behavior,<br>2020, 10, e01560.                                                                   | 2.2 | 11        |
| 14 | Microstructural Alterations in Hippocampal Subfields Mediate Age-Related Memory Decline in Humans.<br>Frontiers in Aging Neuroscience, 2020, 12, 94.                                        | 3.4 | 32        |
| 15 | Enriching hippocampal memory function in older adults through video games. Behavioural Brain<br>Research, 2020, 390, 112667.                                                                | 2.2 | 17        |
| 16 | Mnemonic Similarity Task: A Tool for Assessing Hippocampal Integrity. Trends in Cognitive Sciences, 2019, 23, 938-951.                                                                      | 7.8 | 147       |
| 17 | Improving Hippocampal Memory Through the Experience of a Rich Minecraft Environment. Frontiers in<br>Behavioral Neuroscience, 2019, 13, 57.                                                 | 2.0 | 31        |
| 18 | Excitatory/Inhibitory Imbalance in Anterior Lateral Occipital Complex Can Impair Hippocampal<br>Mnemonic Discrimination. Neuron, 2019, 101, 360-362.                                        | 8.1 | 0         |

CRAIG E L STARK

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Response bias, recollection, and familiarity in individuals with Highly Superior Autobiographical Memory (HSAM). Memory, 2019, 27, 739-749.                                                                                                      | 1.7 | 4         |
| 20 | Recognition Memory Dysfunction Relates to Hippocampal Subfield Volume: A Study of Cognitively<br>Normal and Mildly Impaired Older Adults. Journals of Gerontology - Series B Psychological Sciences<br>and Social Sciences, 2019, 74, 1132-1141. | 3.9 | 29        |
| 21 | What's in a context? Cautions, limitations, and potential paths forward. Neuroscience Letters, 2018, 680, 77-87.                                                                                                                                 | 2.1 | 23        |
| 22 | Modulation of associative learning in the hippocampal-striatal circuit based on item-set similarity.<br>Cortex, 2018, 109, 60-73.                                                                                                                | 2.4 | 7         |
| 23 | A cognitive assessment of highly superior autobiographical memory. Memory, 2017, 25, 276-288.                                                                                                                                                    | 1.7 | 32        |
| 24 | Retrieval of high-fidelity memory arises from distributed cortical networks. NeuroImage, 2017, 149, 178-189.                                                                                                                                     | 4.2 | 18        |
| 25 | The influence of low-level stimulus features on the representation of contexts, items, and their mnemonic associations. Neurolmage, 2017, 155, 513-529.                                                                                          | 4.2 | 18        |
| 26 | Age-related impairment on a forced-choice version of the Mnemonic Similarity Task Behavioral Neuroscience, 2017, 131, 55-67.                                                                                                                     | 1.2 | 27        |
| 27 | 3T hippocampal glutamate-glutamine complex reflects verbal memory decline in aging. Neurobiology of<br>Aging, 2017, 54, 103-111.                                                                                                                 | 3.1 | 18        |
| 28 | Age-related deficits in the mnemonic similarity task for objects and scenes. Behavioural Brain Research, 2017, 333, 109-117.                                                                                                                     | 2.2 | 98        |
| 29 | A harmonized segmentation protocol for hippocampal and parahippocampal subregions: Why do we need one and what are the key goals?. Hippocampus, 2017, 27, 3-11.                                                                                  | 1.9 | 130       |
| 30 | Mnemonic discrimination relates to perforant path integrity: An ultra-high resolution diffusion tensor imaging study. Neurobiology of Learning and Memory, 2016, 129, 107-112.                                                                   | 1.9 | 60        |
| 31 | Memory for sequences of events impaired in typical aging. Learning and Memory, 2015, 22, 138-148.                                                                                                                                                | 1.3 | 16        |
| 32 | Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory.<br>Journal of Neuroscience, 2015, 35, 16116-16125.                                                                                                  | 3.6 | 123       |
| 33 | Functional contributions and interactions between the human hippocampus and subregions of the striatum during arbitrary associative learning and memory. Hippocampus, 2015, 25, 900-911.                                                         | 1.9 | 42        |
| 34 | Limbic Tract Integrity Contributes to Pattern Separation Performance Across the Lifespan. Cerebral Cortex, 2015, 25, 2988-2999.                                                                                                                  | 2.9 | 81        |
| 35 | Quantitative comparison of 21 protocols for labeling hippocampal subfields and parahippocampal subregions in in vivo MRI: Towards a harmonized segmentation protocol. NeuroImage, 2015, 111, 526-541.                                            | 4.2 | 284       |
| 36 | Stability of age-related deficits in the mnemonic similarity task across task variations Behavioral<br>Neuroscience, 2015, 129, 257-268.                                                                                                         | 1.2 | 141       |

CRAIG E L STARK

| #  | Article                                                                                                                                                                                                | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Highly Superior Autobiographical Memory: Quality and Quantity of Retention Over Time. Frontiers in Psychology, 2015, 6, 2017.                                                                          | 2.1  | 35        |
| 38 | A Sequence of events model of episodic memory shows parallels in rats and humans. Hippocampus, 2014, 24, 1178-1188.                                                                                    | 1.9  | 52        |
| 39 | Multivariate pattern analysis of the human medial temporal lobe revealed representationally categorical cortex and representationally agnostic hippocampus. Hippocampus, 2014, 24, 1394-1403.          | 1.9  | 42        |
| 40 | Contributions of human hippocampal subfields to spatial and temporal pattern separation.<br>Hippocampus, 2014, 24, 293-302.                                                                            | 1.9  | 66        |
| 41 | Loss of pattern separation performance in schizophrenia suggests dentate gyrus dysfunction.<br>Schizophrenia Research, 2014, 159, 193-197.                                                             | 2.0  | 97        |
| 42 | The neuroscience of memory: implications for the courtroom. Nature Reviews Neuroscience, 2013, 14, 649-658.                                                                                            | 10.2 | 104       |
| 43 | False memories in highly superior autobiographical memory individuals. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20947-20952.                        | 7.1  | 130       |
| 44 | A task to assess behavioral pattern separation (BPS) in humans: Data from healthy aging and mild cognitive impairment. Neuropsychologia, 2013, 51, 2442-2449.                                          | 1.6  | 414       |
| 45 | Pattern separation deficits following damage to the hippocampus. Neuropsychologia, 2012, 50, 2408-2414.                                                                                                | 1.6  | 91        |
| 46 | It is time to fill in the gaps left by simple dissociations. Cognitive Neuroscience, 2012, 3, 215-216.                                                                                                 | 1.4  | 1         |
| 47 | Conserved fMRI and LFP Signals during New Associative Learning in the Human and Macaque Monkey<br>Medial Temporal Lobe. Neuron, 2012, 74, 743-752.                                                     | 8.1  | 22        |
| 48 | Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiology of Learning and Memory, 2012, 97, 465-469.                                                           | 1.9  | 91        |
| 49 | Behavioral and neuroanatomical investigation of Highly Superior Autobiographical Memory (HSAM).<br>Neurobiology of Learning and Memory, 2012, 98, 78-92.                                               | 1.9  | 168       |
| 50 | Functional MRI of the amygdala and bed nucleus of the stria terminalis during conditions of uncertainty in generalized anxiety disorder. Journal of Psychiatric Research, 2012, 46, 1045-1052.         | 3.1  | 131       |
| 51 | Intrinsic functional connectivity of the human medial temporal lobe suggests a distinction between adjacent MTL cortices and hippocampus. Hippocampus, 2012, 22, 2290-2302.                            | 1.9  | 31        |
| 52 | Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus, 2011, 21, 968-979.                                          | 1.9  | 444       |
| 53 | Pattern separation in the hippocampus. Trends in Neurosciences, 2011, 34, 515-525.                                                                                                                     | 8.6  | 1,122     |
| 54 | Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning and Memory, 2011, 18, 703-711. | 1.3  | 59        |

CRAIG E L STARK

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Striatal and Medial Temporal Lobe Functional Interactions during Visuomotor Associative Learning.<br>Cerebral Cortex, 2011, 21, 647-658.                                                                                                  | 2.9  | 46        |
| 56 | Imaging the reconstruction of true and false memories using sensory reactivation and the misinformation paradigms. Learning and Memory, 2010, 17, 485-488.                                                                                | 1.3  | 81        |
| 57 | Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation<br>in aged humans in vivo. Proceedings of the National Academy of Sciences of the United States of<br>America, 2010, 107, 12687-12691.   | 7.1  | 212       |
| 58 | High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. NeuroImage, 2010, 51, 1242-1252.                                                                  | 4.2  | 436       |
| 59 | A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobeâ <sup>-</sup> †. NeuroImage, 2009, 44, 319-327.                                                                        | 4.2  | 225       |
| 60 | Multiple signals of recognition memory in the medial temporal lobe. Hippocampus, 2008, 18, 945-954.                                                                                                                                       | 1.9  | 73        |
| 61 | Pattern Separation in the Human Hippocampal CA3 and Dentate Gyrus. Science, 2008, 319, 1640-1642.                                                                                                                                         | 12.6 | 857       |
| 62 | Overcoming interference: An fMRI investigation of pattern separation in the medial temporal lobe.<br>Learning and Memory, 2007, 14, 625-633.                                                                                              | 1.3  | 266       |
| 63 | High-resolution fMRI investigation of the medial temporal lobe. Human Brain Mapping, 2007, 28, 959-966.                                                                                                                                   | 3.6  | 110       |
| 64 | Increasing the power of functional maps of the medial temporal lobe by using large deformation<br>diffeomorphic metric mapping. Proceedings of the National Academy of Sciences of the United States<br>of America, 2005, 102, 9685-9690. | 7.1  | 164       |
| 65 | Functional Magnetic Resonance Imaging Activity during the Gradual Acquisition and Expression of Paired-Associate Memory. Journal of Neuroscience, 2005, 25, 5720-5729.                                                                    | 3.6  | 124       |
| 66 | Neural activity during encoding predicts false memories created by misinformation. Learning and Memory, 2005, 12, 3-11.                                                                                                                   | 1.3  | 114       |
| 67 | Medial temporal lobe activation during encoding and retrieval of novel face-name pairs. Hippocampus, 2004, 14, 919-930.                                                                                                                   | 1.9  | 284       |
| 68 | THE MEDIAL TEMPORAL LOBE. Annual Review of Neuroscience, 2004, 27, 279-306.                                                                                                                                                               | 10.7 | 2,288     |
| 69 | Neural processing associated with true and false memory retrieval. Cognitive, Affective and Behavioral Neuroscience, 2003, 3, 323-334.                                                                                                    | 2.0  | 77        |
| 70 | Hippocampal damage equally impairs memory for single items and memory for conjunctions.<br>Hippocampus, 2003, 13, 281-292.                                                                                                                | 1.9  | 103       |
| 71 | Making Memories without Trying: Medial Temporal Lobe Activity Associated with Incidental Memory Formation during Recognition. Journal of Neuroscience, 2003, 23, 6748-6753.                                                               | 3.6  | 203       |
| 72 | Recognition Memory for Single Items and for Associations Is Similarly Impaired Following Damage to the Hippocampal Region. Learning and Memory, 2002, 9, 238-242.                                                                         | 1.3  | 118       |

| #  | Article                                                                                                                                                           | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Recognition memory and familiarity judgments in severe amnesia: No evidence for a contribution of repetition priming Behavioral Neuroscience, 2000, 114, 459-467. | 1.2 | 77        |
| 74 | Functional Magnetic Resonance Imaging (fMRI) Activity in the Hippocampal Region during Recognition<br>Memory. Journal of Neuroscience, 2000, 20, 7776-7781.       | 3.6 | 147       |