Hamidreza Ghandehari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6861674/publications.pdf

Version: 2024-02-01

177 papers

12,449 citations

19608 61 h-index 27345 106 g-index

181 all docs

181 docs citations

times ranked

181

15227 citing authors

#	Article	IF	Citations
1	Mechanisms of immune response to inorganic nanoparticles and their degradation products. Advanced Drug Delivery Reviews, 2022, 180, 114022.	6.6	33
2	An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics, 2022, 14, 175.	2.0	2
3	Translational Development of a Silkâ€Elastinlike Protein Polymer Embolic for Transcatheter Arterial Embolization. Macromolecular Bioscience, 2022, , 2100401.	2.1	2
4	Activation of Autophagy by Low-Dose Silica Nanoparticles Enhances Testosterone Secretion in Leydig Cells. International Journal of Molecular Sciences, 2022, 23, 3104.	1.8	8
5	Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers. Journal of Controlled Release, 2022, 344, 39-49.	4.8	5
6	Development of Thermoresponsive Protein Complexes for Targeting CD20 Receptors. Macromolecular Bioscience, 2022, , 2200028.	2.1	1
7	Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. Atmospheric Environment, 2022, 284, 119194.	1.9	1
8	BECLIN-1-Mediated Autophagy Suppresses Silica Nanoparticle-Induced Testicular Toxicity via the Inhibition of Caspase 8-Mediated Cell Apoptosis in Leydig Cells. Cells, 2022, 11, 1863.	1.8	2
9	Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 540-551.	0.9	5
10	Inflammationâ€driven vascular dysregulation in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2021, 11, 976-983.	1.5	10
11	Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. Journal of Controlled Release, 2021, 330, 878-888.	4.8	4
12	Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. Journal of Personalized Medicine, 2021, 11, 88.	1.1	16
13	Vascular permeability in chronic rhinosinusitis enhances accumulation and retention of nanoscale pegylated liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 38, 102453.	1.7	5
14	A dual-functional Embolization-Visualization System for Fluorescence image-guided Tumor Resection. Theranostics, 2020, 10, 4530-4543.	4.6	9
15	Location of stimuli-responsive peptide sequences within silk-elastinlike protein-based polymers affects nanostructure assembly and drug–polymer interactions. Journal of Drug Targeting, 2020, 28, 766-779.	2.1	8
16	One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. Journal of Controlled Release, 2020, 324, 471-481.	4.8	64
17	Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2019, 144, 112-132.	6.6	140
18	Time- and dose-dependent gene expression analysis of macrophage response as a function of porosity of silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102041.	1.7	5

#	Article	IF	CITATIONS
19	Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 1170-1185.	0.9	4
20	Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opinion on Drug Delivery, 2019, 16, 1051-1061.	2.4	12
21	Matrix Mediated Viral Gene Delivery: A Review. Bioconjugate Chemistry, 2019, 30, 384-399.	1.8	10
22	Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials, 2019, 217, 119293.	5.7	30
23	GRP78â€Targeted HPMA Copolymerâ€Photosensitizer Conjugate for Hyperthermiaâ€Induced Enhanced Uptake and Cytotoxicity in MCFâ€7 Breast Cancer Cells. Macromolecular Bioscience, 2019, 19, e1900032.	2.1	8
24	Subchronic toxicity of silica nanoparticles as a function of size and porosity. Journal of Controlled Release, 2019, 304, 216-232.	4.8	82
25	ADDR Editor's Collection 2019. Advanced Drug Delivery Reviews, 2019, 151-152, 1.	6.6	0
26	Transient Receptor Potential Ion Channel–Dependent Toxicity of Silica Nanoparticles and Poly(amido) Tj ETQq0	0 <u>0</u> rgBT /	Overlock 10
27	Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 106-125.	1.7	59
28	Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	2
29	Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation. International Journal of Pharmaceutics, 2018, 545, 113-116.	2.6	20
30	Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Controlled Release, 2018, 282, 62-75.	4.8	108
31	Synthesis of water-degradable silica nanoparticles from carbamate-containing bridged silsesquioxane precursor. RSC Advances, 2018, 8, 4914-4920.	1.7	18
32	Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Molecular Pharmaceutics, 2018, 15, 2372-2383.	2.3	39
33	Selfâ€Assembly of Thermoresponsive Recombinant Silkâ€Elastinlike Nanogels. Macromolecular Bioscience, 2018, 18, 1700192.	2.1	15
34	Global gene expression analysis of macrophage response induced by nonporous and porous silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 533-545.	1.7	26
35	Silica Nanoparticle–Endothelial Interaction: Uptake and Effect on Platelet Adhesion under Flow Conditions. ACS Applied Bio Materials, 2018, 1, 1620-1627.	2.3	14
36	ADDR Editor's Collection 2018. Advanced Drug Delivery Reviews, 2018, 136-137, 1.	6.6	0

#	Article	IF	Citations
37	PEG-Benzaldehyde-Hydrazone-Lipid Based PEG-Sheddable pH-Sensitive Liposomes: Abilities for Endosomal Escape and Long Circulation. Pharmaceutical Research, 2018, 35, 154.	1.7	45
38	Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials, 2018, 178, 317-325.	5.7	17
39	Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. Journal of Controlled Release, 2017, 259, 62-75.	4.8	106
40	Silk-elastinlike protein polymers enhance the efficacy of a therapeutic glycosaminoglycan for prophylactic treatment of radiation-induced proctitis. Journal of Controlled Release, 2017, 263, 46-56.	4.8	26
41	Redox-Responsive Polysulfide-Based Biodegradable Organosilica Nanoparticles for Delivery of Bioactive Agents. ACS Applied Materials & Enterfaces, 2017, 9, 21133-21146.	4.0	76
42	Editorial: Editors' Collection 2016. Advanced Drug Delivery Reviews, 2017, 108, 1.	6.6	0
43	Enhanced efficacy of combination heat shock targeted polymer therapeutics with high intensity focused ultrasound. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1235-1243.	1.7	20
44	ADDR Editor's Collection 2017. Advanced Drug Delivery Reviews, 2017, 122, 1.	6.6	0
45	Comparative Endocytosis Mechanisms and Anticancer Effect of HPMA Copolymer―and PAMAM Dendrimerâ€MTCP Conjugates for Photodynamic Therapy. Macromolecular Bioscience, 2017, 17, 1600333.	2.1	21
46	RGDfKâ€functionalized gold nanorods bind only to activated platelets. Journal of Biomedical Materials Research - Part A, 2017, 105, 209-217.	2.1	6
47	Molecular dynamics simulations in drug delivery research: Calcium chelation of G3.5 PAMAM dendrimers. Cogent Chemistry, 2016, 2, 1229830.	2.5	12
48	Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases. Analytical Chemistry, 2016, 88, 5398-5405.	3.2	9
49	Solid lipid nanoparticles containing 7-ethyl-10-hydroxycamptothecin (SN38): Preparation, characterization, in vitro, and in vivo evaluations. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 42-50.	2.0	35
50	Poly(amido amine) dendrimers in oral delivery. Tissue Barriers, 2016, 4, e1173773.	1.6	40
51	A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Computer Methods and Programs in Biomedicine, 2016, 132, 93-103.	2.6	89
52	High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. Journal of Controlled Release, 2016, 241, 186-193.	4.8	36
53	Differential Protein Adsorption and Cellular Uptake of Silica Nanoparticles Based on Size and Porosity. ACS Applied Materials & Samp; Interfaces, 2016, 8, 34820-34832.	4.0	99
54	Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS Nano, 2016, 10, 10533-10543.	7.3	90

#	Article	IF	CITATIONS
55	Nanotheranostics and In-Vivo Imaging. Advances in Delivery Science and Technology, 2016, , 97-129.	0.4	2
56	Silk-Elastinlike Protein Polymer Liquid Chemoembolic for Localized Release of Doxorubicin and Sorafenib. Molecular Pharmaceutics, 2016, 13, 2736-2748.	2.3	35
57	Polymeric materials for embolic and chemoembolic applications. Journal of Controlled Release, 2016, 240, 414-433.	4.8	106
58	Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors. Biotechnology and Bioengineering, 2015, 112, 1967-1983.	1.7	59
59	Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue. Macromolecular Bioscience, 2015, 15, 1735-1743.	2.1	5
60	Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors. Beilstein Journal of Nanotechnology, 2015, 6, 1886-1896.	1.5	20
61	Direct Observation of Interactions of Silk-Elastinlike Protein Polymer with Adenoviruses and Elastase. Molecular Pharmaceutics, 2015, 12, 1673-1679.	2.3	5
62	In vivo evaluation of matrix metalloproteinase responsive silk–elastinlike protein polymers for cancer gene therapy. Journal of Controlled Release, 2015, 213, 96-102.	4.8	42
63	Effects of Heating Temperature and Duration by Gold Nanorod Mediated Plasmonic Photothermal Therapy on Copolymer Accumulation in Tumor Tissue. Molecular Pharmaceutics, 2015, 12, 1605-1614.	2.3	17
64	Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials, 2015, 53, 574-582.	5.7	73
65	In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization. Biomaterials, 2015, 57, 142-152.	5.7	58
66	ADDR Editor's Collection 2015. Advanced Drug Delivery Reviews, 2015, 91, 1-2.	6.6	1
67	Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue. Molecular Pharmaceutics, 2015, 12, 4099-4107.	2.3	16
68	Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10, 487-510.	6.2	967
69	Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. Journal of Controlled Release, 2015, 220, 245-252.	4.8	59
70	Sustained local delivery of oncolytic short hairpin RNA adenoviruses for treatment of head and neck cancer. Journal of Gene Medicine, 2014, 16, 143-152.	1.4	13
71	In Vitro Synergistic Action of Geldanamycin- and Docetaxel-Containing HPMA Copolymer-RGDfK Conjugates Against Ovarian Cancer. Macromolecular Bioscience, 2014, 14, 1735-1747.	2.1	7
72	Gold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors. Nuclear Medicine and Biology, 2014, 41, 282-289.	0.3	44

#	Article	IF	Citations
7 3	In Vitro Evaluation of HPMA-Copolymers Targeted to HER2 Expressing Pancreatic Tumor Cells for Image Guided Drug Delivery. Macromolecular Bioscience, 2014, 14, 92-99.	2.1	4
74	Controlled release from recombinant polymers. Journal of Controlled Release, 2014, 190, 304-313.	4.8	51
7 5	Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers. Biomacromolecules, 2014, 15, 2889-2895.	2.6	14
76	Effect of shear on physicochemical properties of matrix metalloproteinase responsive silk-elastinlike hydrogels. Journal of Controlled Release, 2014, 195, 92-98.	4.8	23
77	Enhanced Delivery of Polymer Therapeutics to Solid Tumors. ACS Symposium Series, 2013, , 151-185.	0.5	O
78	Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin. International Journal of Pharmaceutics, 2013, 456, 175-185.	2.6	83
79	Direct Observation of Amyloid Nucleation under Nanomechanical Stretching. ACS Nano, 2013, 7, 7734-7743.	7.3	19
80	Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. Journal of Controlled Release, 2013, 166, 130-138.	4.8	59
81	Nanoparticle Geometry and Surface Orientation Influence Mode of Cellular Uptake. ACS Nano, 2013, 7, 1961-1973.	7.3	287
82	Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. International Journal of Pharmaceutics, 2013, 456, 202-211.	2.6	28
83	Synthesis and Characterization of a Matrix-Metalloproteinase Responsive Silk–Elastinlike Protein Polymer. Biomacromolecules, 2013, 14, 618-625.	2.6	54
84	Charge affects the oral toxicity of poly(amidoamine) dendrimers. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 330-334.	2.0	87
85	Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer–drug conjugates and gold nanorod induced hyperthermia. Journal of Controlled Release, 2013, 170, 41-50.	4.8	53
86	Transcriptional Responses of Human Aortic Endothelial Cells to Nanoconstructs Used in Biomedical Applications. Molecular Pharmaceutics, 2013, 10, 3242-3252.	2.3	10
87	Evidence of Oral Translocation of Anionic G6.5 Dendrimers in Mice. Molecular Pharmaceutics, 2013, 10, 988-998.	2.3	26
88	Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus. Chemical Communications, 2012, 48, 10654.	2,2	17
89	Cationic PAMAM Dendrimers Disrupt Key Platelet Functions. Molecular Pharmaceutics, 2012, 9, 1599-1611.	2.3	119
90	Recombinant protein-based polymers for advanced drug delivery. Chemical Society Reviews, 2012, 41, 2696.	18.7	93

#	Article	IF	Citations
91	Preparation of dopamine-modified boron nanoparticles. Journal of Materials Chemistry, 2012, 22, 877-882.	6.7	28
92	Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today, 2012, 7, 158-167.	6.2	107
93	Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation. ACS Nano, 2012, 6, 9900-9910.	7.3	174
94	In Vivo Methods of Nanotoxicology. Methods in Molecular Biology, 2012, 926, 235-253.	0.4	38
95	Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 2012, 6, 713-723.	1.6	145
96	In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. Journal of Controlled Release, 2012, 163, 46-54.	4.8	164
97	Preface. Journal of Controlled Release, 2012, 163, 1.	4.8	1
98	Influence of Geometry, Porosity, and Surface Characteristics of Silica Nanoparticles on Acute Toxicity: Their Vasculature Effect and Tolerance Threshold. ACS Nano, 2012, 6, 2289-2301.	7.3	186
99	Polymeric Conjugates for Drug Delivery. Chemistry of Materials, 2012, 24, 840-853.	3.2	503
100	Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Advanced Drug Delivery Reviews, 2012, 64, 571-588.	6.6	270
101	Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. International Journal of Pharmaceutics, 2012, 427, 97-104.	2.6	38
102	Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment. Journal of Drug Targeting, 2011, 19, 915-924.	2.1	41
103	Comparison of Active and Passive Targeting of Docetaxel for Prostate Cancer Therapy by HPMA Copolymer–RGDfK Conjugates. Molecular Pharmaceutics, 2011, 8, 1090-1099.	2.3	56
104	Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity. ACS Nano, 2011, 5, 5717-5728.	7.3	577
105	Fabrication of Highly Uniform Nanoparticles from Recombinant Silk-Elastin-like Protein Polymers for Therapeutic Agent Delivery. ACS Nano, 2011, 5, 5374-5382.	7.3	53
106	G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. Journal of Controlled Release, 2011, 150, 318-325.	4.8	95
107	Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. Journal of Controlled Release, 2011, 151, 263-270.	4.8	40
108	Silica nanoconstruct cellular toleration threshold in vitro. Journal of Controlled Release, 2011, 153, 40-48.	4.8	58

#	Article	IF	CITATIONS
109	Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. International Journal of Pharmaceutics, 2011, 420, 111-117.	2.6	41
110	Nanomechanical Stimulus Accelerates and Directs the Self-Assembly of Silk-Elastin-like Nanofibers. Journal of the American Chemical Society, 2011, 133, 1745-1747.	6.6	35
111	Differential toxicity of amorphous silica nanoparticles toward phagocytic and epithelial cells. Journal of Nanoparticle Research, 2011, 13, 5381-5396.	0.8	23
112	Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery. International Journal of Pharmaceutics, 2011, 415, 315-318.	2.6	62
113	Caspase 3 Independent Cell Death Induced by Amorphous Silica Nanoparticles. Nanoscience and Nanotechnology Letters, 2011, 3, 309-313.	0.4	5
114	Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. Journal of Applied Toxicology, 2010, 30, 212-217.	1.4	275
115	HPMA copolymer–cyclic RGD conjugates for tumor targetingâ~†â~†â~†. Advanced Drug Delivery Reviews, 2010, 62, 167-183.	6.6	89
116	Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Advanced Drug Delivery Reviews, 2010, 62, 1509-1523.	6.6	74
117	Advances in recombinant polymers for delivery of bioactive agents. Advanced Drug Delivery Reviews, 2010, 62, 1403.	6.6	13
118	Cellular Entry of G3.5 Poly (amido amine) Dendrimers by Clathrin- and Dynamin-Dependent Endocytosis Promotes Tight Junctional Opening in Intestinal Epithelia. Pharmaceutical Research, 2010, 27, 1547-1557.	1.7	58
119	PAMAM-Camptothecin Conjugate Inhibits Proliferation and Induces Nuclear Fragmentation in Colorectal Carcinoma Cells. Pharmaceutical Research, 2010, 27, 2307-2316.	1.7	47
120	HPMA Copolymer-Aminohexylgeldanamycin Conjugates Targeting Cell Surface Expressed GRP78 in Prostate Cancer. Pharmaceutical Research, 2010, 27, 2683-2693.	1.7	32
121	Silkâ€elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. Journal of Gene Medicine, 2010, 12, 572-579.	1.4	54
122	Influence of Solute Charge and Hydrophobicity on Partitioning and Diffusion in a Genetically Engineered Silkâ€Elastinâ€Like Protein Polymer Hydrogel. Macromolecular Bioscience, 2010, 10, 1235-1247.	2.1	22
123	Carboxyl-Terminated PAMAM-SN38 Conjugates: Synthesis, Characterization, and in Vitro Evaluation. Bioconjugate Chemistry, 2010, 21, 1804-1810.	1.8	60
124	Silk-Elastin-like Hydrogel Improves the Safety of Adenovirus-Mediated Gene-Directed Enzymeâ^'Prodrug Therapy. Molecular Pharmaceutics, 2010, 7, 1050-1056.	2.3	46
125	Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery. Journal of Controlled Release, 2009, 138, 78-85.	4.8	90
126	Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: From molecular definition to controlled gene expression. Journal of Controlled Release, 2009, 140, 256-261.	4.8	68

#	Article	IF	CITATIONS
127	Silk–elastinlike protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer, 2009, 50, 366-374.	1.8	69
128	Noninvasive Monitoring of HPMA Copolymer–RGDfK Conjugates by Magnetic Resonance Imaging. Pharmaceutical Research, 2009, 26, 1121-1129.	1.7	36
129	Targetable HPMA Copolymer–Aminohexylgeldanamycin Conjugates for Prostate Cancer Therapy. Pharmaceutical Research, 2009, 26, 1407-1418.	1.7	47
130	Influence of polymer structure and biodegradation on DNA release from silk–elastinlike protein polymer hydrogels. International Journal of Pharmaceutics, 2009, 368, 215-219.	2.6	41
131	Biodistribution of HPMA Copolymer-Aminohexylgeldanamycin-RGDfK Conjugates for P Delivery. Molecular Pharmaceutics, 2009, 6, 1836-1847.	rostateâ€ 2.3	‰Cancerâ
132	Silk-Elastinlike Protein Polymer Hydrogels for Localized Adenoviral Gene Therapy of Head and Neck Tumors. Biomacromolecules, 2009, 10, 2183-2188.	2.6	51
133	Surface Induced Nanofiber Growth by Self-Assembly of a Silk-Elastin-like Protein Polymer. Langmuir, 2009, 25, 12682-12686.	1.6	69
134	In Vitro Chondrogenesis of Mesenchymal Stem Cells in Recombinant Silk-elastinlike Hydrogels. Pharmaceutical Research, 2008, 25, 692-699.	1.7	87
135	Recombinant Biomaterials for Pharmaceutical and Biomedical Applications. Pharmaceutical Research, 2008, 25, 672-673.	1.7	8
136	Potential Oral Delivery of 7-Ethyl-10-Hydroxy-Camptothecin (SN-38) using Poly(amidoamine) Dendrimers. Pharmaceutical Research, 2008, 25, 1723-1729.	1.7	92
137	HPMA Copolymer–Doxorubicin–Gadolinium Conjugates: Synthesis, Characterization, and <i>in vitro</i> Evaluation. Macromolecular Bioscience, 2008, 8, 741-748.	2.1	26
138	Materials for advanced drug delivery in the 21st century: a focus area for Advanced Drug Delivery Reviews. Advanced Drug Delivery Reviews, 2008, 60, 956-956.	6.6	17
139	Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A″-DTPA) conjugates show increased kidney accumulation. Journal of Controlled Release, 2008, 132, 193-199.	4.8	49
140	Characterization and Real-Time Imaging of Gene Expression of Adenovirus Embedded Silk-Elastinlike Protein Polymer Hydrogels. Molecular Pharmaceutics, 2008, 5, 891-897.	2.3	31
141	Endocytosis Inhibitors Prevent Poly(amidoamine) Dendrimer Internalization and Permeability across Caco-2 Cells. Molecular Pharmaceutics, 2008, 5, 364-369.	2.3	139
142	Cellular Uptake and Cytotoxicity of Silica Nanotubes. Nano Letters, 2008, 8, 2150-2154.	4.5	197
143	Functionalized Dendrimers as Nanoscale Drug Carriers. Fundamental Biomedical Technologies, 2008, , 201-232.	0.2	7
144	Characterization of Structurally Related Adenovirus-laden Silk-elastinlike Hydrogels. Journal of Bioactive and Compatible Polymers, 2008, 23, 5-19.	0.8	25

#	Article	IF	Citations
145	A prostate-specific antigen–activated <i>N</i> -(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Molecular Cancer Therapeutics, 2007, 6, 2928-2937.	1.9	51
146	Surface Acetylation of Polyamidoamine (PAMAM) Dendrimers Decreases Cytotoxicity while Maintaining Membrane Permeability. Bioconjugate Chemistry, 2007, 18, 2054-2060.	1.8	267
147	Delivery of bioactive agents from recombinant polymers. Progress in Polymer Science, 2007, 32, 1008-1030.	11.8	33
148	Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells. Pharmaceutical Research, 2007, 24, 2138-2145.	1.7	173
149	Macrophage Targeted N-(2-Hydroxypropyl)methacrylamide Conjugates for Magnetic Resonance Imaging. Molecular Pharmaceutics, 2006, 3, 550-557.	2.3	34
150	Polymer-peptide conjugates for angiogenesis targeted tumor radiotherapy. Nuclear Medicine and Biology, 2006, 33, 43-52.	0.3	67
151	Transport of Poly(Amidoamine) Dendrimers across Caco-2 Cell Monolayers: Influence of Size, Charge and Fluorescent Labeling. Pharmaceutical Research, 2006, 23, 2818-2826.	1.7	157
152	Template synthesis of multifunctional nanotubes for controlled release. Journal of Controlled Release, 2006, 114, 143-152.	4.8	110
153	Polymeric conjugates of mono- and bi-cyclic $\hat{l}\pm V\hat{l}^23$ binding peptides for tumor targeting. Journal of Controlled Release, 2006, 114, 175-183.	4.8	84
154	Nanocarriers for Nuclear Imaging and Radiotherapy of Cancer. Current Pharmaceutical Design, 2006, 12, 4729-4749.	0.9	111
155	Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2163-2176.	6.6	160
156	Targeting tumor angiogenic vasculature using polymer–RGD conjugates. Journal of Controlled Release, 2005, 102, 191-201.	4.8	142
157	Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. Journal of Drug Targeting, 2005, 13, 189-197.	2.1	38
158	Molecular Engineering of Silk-Elastinlike Polymers for Matrix-Mediated Gene Delivery:  Biosynthesis and Characterization. Molecular Pharmaceutics, 2005, 2, 139-150.	2.3	99
159	Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. Journal of Nuclear Medicine, 2005, 46, 1552-60.	2.8	80
160	Thermal Analysis of Water in Silkâ^Elastinlike Hydrogels by Differential Scanning Calorimetry. Biomacromolecules, 2004, 5, 793-797.	2.6	20
161	Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. Journal of Controlled Release, 2004, 94, 115-127.	4.8	63
162	In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. Journal of Controlled Release, 2004, 94, 433-445.	4.8	191

#	Article	IF	CITATIONS
163	Genetically engineered polymers: status and prospects for controlled release. Journal of Controlled Release, 2004, 95, 1-26.	4.8	122
164	Technetium-99m-Labeled N-(2-Hydroxypropyl) Methacrylamide Copolymers: Synthesis, Characterization, and in Vivo Biodistribution. Pharmaceutical Research, 2004, 21, 1153-1159.	1.7	45
165	N-(2-Hydroxypropyl)methacrylamide(HPMA) Copolymer-Linked Nitroxides: Potential Magnetic Resonance Contrast Agents. Macromolecular Bioscience, 2003, 3, 647-652.	2.1	24
166	Genetic Engineering of Stimuli-Sensitive Silkelastin-like Protein Block Copolymers. Biomacromolecules, 2003, 4, 602-607.	2.6	93
167	Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Journal of Controlled Release, 2002, 81, 355-365.	4.8	235
168	Solute diffusion in genetically engineered silk–elastinlike protein polymer hydrogels. Journal of Controlled Release, 2002, 82, 277-287.	4.8	84
169	Engineered protein polymers for drug delivery and biomedical applications. Advanced Drug Delivery Reviews, 2002, 54, 1053-1055.	6.6	16
170	Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Advanced Drug Delivery Reviews, 2002, 54, 1075-1091.	6.6	214
171	Genetic synthesis and characterization of pH- and temperature-sensitive silk-elastinlike protein block copolymers. Journal of Biomedical Materials Research Part B, 2002, 62, 195-203.	3.0	77
172	Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials, 2002, 23, 4203-4210.	5.7	116
173	Controlled release of plasmid DNA from a genetically engineered silk-elastinlike hydrogel. Pharmaceutical Research, 2002, 19, 954-959.	1.7	109
174	Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharmaceutical Research, 2001, 18, 23-28.	1.7	92
175	N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. Journal of Controlled Release, 2001, 77, 233-243.	4.8	35
176	In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials, 1997, 18, 861-872.	5.7	98
177	Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction. Macromolecular Chemistry and Physics, 1996, 197, 965-980.	1.1	37