
Hamidreza Ghandehari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6861674/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanoparticle uptake: The phagocyte problem. Nano Today, 2015, 10, 487-510.	11.9	967
2	Impact of Silica Nanoparticle Design on Cellular Toxicity and Hemolytic Activity. ACS Nano, 2011, 5, 5717-5728.	14.6	577
3	Polymeric Conjugates for Drug Delivery. Chemistry of Materials, 2012, 24, 840-853.	6.7	503
4	Nanoparticle Geometry and Surface Orientation Influence Mode of Cellular Uptake. ACS Nano, 2013, 7, 1961-1973.	14.6	287
5	Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. Journal of Applied Toxicology, 2010, 30, 212-217.	2.8	275
6	Transepithelial transport and toxicity of PAMAM dendrimers: Implications for oral drug delivery. Advanced Drug Delivery Reviews, 2012, 64, 571-588.	13.7	270
7	Surface Acetylation of Polyamidoamine (PAMAM) Dendrimers Decreases Cytotoxicity while Maintaining Membrane Permeability. Bioconjugate Chemistry, 2007, 18, 2054-2060.	3.6	267
8	Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. Journal of Controlled Release, 2002, 81, 355-365.	9.9	235
9	Genetically engineered silk-elastinlike protein polymers for controlled drug delivery. Advanced Drug Delivery Reviews, 2002, 54, 1075-1091.	13.7	214
10	Cellular Uptake and Cytotoxicity of Silica Nanotubes. Nano Letters, 2008, 8, 2150-2154.	9.1	197
11	In vitro and in vivo evaluation of recombinant silk-elastinlike hydrogels for cancer gene therapy. Journal of Controlled Release, 2004, 94, 433-445.	9.9	191
12	Influence of Geometry, Porosity, and Surface Characteristics of Silica Nanoparticles on Acute Toxicity: Their Vasculature Effect and Tolerance Threshold. ACS Nano, 2012, 6, 2289-2301.	14.6	186
13	Cationic PAMAM Dendrimers Aggressively Initiate Blood Clot Formation. ACS Nano, 2012, 6, 9900-9910.	14.6	174
14	Endocytosis and Interaction of Poly (Amidoamine) Dendrimers with Caco-2 Cells. Pharmaceutical Research, 2007, 24, 2138-2145.	3.5	173
15	In vivo biodistribution and pharmacokinetics of silica nanoparticles as a function of geometry, porosity and surface characteristics. Journal of Controlled Release, 2012, 163, 46-54.	9.9	164
16	Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Advanced Drug Delivery Reviews, 2005, 57, 2163-2176.	13.7	160
17	Transport of Poly(Amidoamine) Dendrimers across Caco-2 Cell Monolayers: Influence of Size, Charge and Fluorescent Labeling. Pharmaceutical Research, 2006, 23, 2818-2826.	3.5	157
18	Size and surface charge significantly influence the toxicity of silica and dendritic nanoparticles. Nanotoxicology, 2012, 6, 713-723.	3.0	145

#	Article	IF	CITATIONS
19	Targeting tumor angiogenic vasculature using polymer–RGD conjugates. Journal of Controlled Release, 2005, 102, 191-201.	9.9	142
20	Subchronic and chronic toxicity evaluation of inorganic nanoparticles for delivery applications. Advanced Drug Delivery Reviews, 2019, 144, 112-132.	13.7	140
21	Endocytosis Inhibitors Prevent Poly(amidoamine) Dendrimer Internalization and Permeability across Caco-2 Cells. Molecular Pharmaceutics, 2008, 5, 364-369.	4.6	139
22	Genetically engineered polymers: status and prospects for controlled release. Journal of Controlled Release, 2004, 95, 1-26.	9.9	122
23	Cationic PAMAM Dendrimers Disrupt Key Platelet Functions. Molecular Pharmaceutics, 2012, 9, 1599-1611.	4.6	119
24	Swelling behavior of a genetically engineered silk-elastinlike protein polymer hydrogel. Biomaterials, 2002, 23, 4203-4210.	11.4	116
25	Nanocarriers for Nuclear Imaging and Radiotherapy of Cancer. Current Pharmaceutical Design, 2006, 12, 4729-4749.	1.9	111
26	Template synthesis of multifunctional nanotubes for controlled release. Journal of Controlled Release, 2006, 114, 143-152.	9.9	110
27	Controlled release of plasmid DNA from a genetically engineered silk-elastinlike hydrogel. Pharmaceutical Research, 2002, 19, 954-959.	3.5	109
28	Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Controlled Release, 2018, 282, 62-75.	9.9	108
29	Guided delivery of polymer therapeutics using plasmonic photothermal therapy. Nano Today, 2012, 7, 158-167.	11.9	107
30	Polymeric materials for embolic and chemoembolic applications. Journal of Controlled Release, 2016, 240, 414-433.	9.9	106
31	Matrix-metalloproteinases as targets for controlled delivery in cancer: An analysis of upregulation and expression. Journal of Controlled Release, 2017, 259, 62-75.	9.9	106
32	Molecular Engineering of Silk-Elastinlike Polymers for Matrix-Mediated Gene Delivery:  Biosynthesis and Characterization. Molecular Pharmaceutics, 2005, 2, 139-150.	4.6	99
33	Differential Protein Adsorption and Cellular Uptake of Silica Nanoparticles Based on Size and Porosity. ACS Applied Materials & amp; Interfaces, 2016, 8, 34820-34832.	8.0	99
34	In vitro degradation of pH-sensitive hydrogels containing aromatic azo bonds. Biomaterials, 1997, 18, 861-872.	11.4	98
35	G3.5 PAMAM dendrimers enhance transepithelial transport of SN38 while minimizing gastrointestinal toxicity. Journal of Controlled Release, 2011, 150, 318-325.	9.9	95
36	Genetic Engineering of Stimuli-Sensitive Silkelastin-like Protein Block Copolymers. Biomacromolecules, 2003, 4, 602-607.	5.4	93

#	Article	IF	CITATIONS
37	Recombinant protein-based polymers for advanced drug delivery. Chemical Society Reviews, 2012, 41, 2696.	38.1	93
38	Extravasation of poly(amidoamine) (PAMAM) dendrimers across microvascular network endothelium. Pharmaceutical Research, 2001, 18, 23-28.	3.5	92
39	Potential Oral Delivery of 7-Ethyl-10-Hydroxy-Camptothecin (SN-38) using Poly(amidoamine) Dendrimers. Pharmaceutical Research, 2008, 25, 1723-1729.	3.5	92
40	Transepithelial transport of PEGylated anionic poly(amidoamine) dendrimers: Implications for oral drug delivery. Journal of Controlled Release, 2009, 138, 78-85.	9.9	90
41	Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS Nano, 2016, 10, 10533-10543.	14.6	90
42	HPMA copolymer–cyclic RGD conjugates for tumor targetingâ~†â~†â~†. Advanced Drug Delivery Reviews, 2010, 62, 167-183.	13.7	89
43	A review of the applications of data mining and machine learning for the prediction of biomedical properties of nanoparticles. Computer Methods and Programs in Biomedicine, 2016, 132, 93-103.	4.7	89
44	In Vitro Chondrogenesis of Mesenchymal Stem Cells in Recombinant Silk-elastinlike Hydrogels. Pharmaceutical Research, 2008, 25, 692-699.	3.5	87
45	Charge affects the oral toxicity of poly(amidoamine) dendrimers. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 84, 330-334.	4.3	87
46	Solute diffusion in genetically engineered silk–elastinlike protein polymer hydrogels. Journal of Controlled Release, 2002, 82, 277-287.	9.9	84
47	Polymeric conjugates of mono- and bi-cyclic αVβ3 binding peptides for tumor targeting. Journal of Controlled Release, 2006, 114, 175-183.	9.9	84
48	Poly(amido amine) dendrimers as absorption enhancers for oral delivery of camptothecin. International Journal of Pharmaceutics, 2013, 456, 175-185.	5.2	83
49	Subchronic toxicity of silica nanoparticles as a function of size and porosity. Journal of Controlled Release, 2019, 304, 216-232.	9.9	82
50	Targeting tumor angiogenesis: comparison of peptide and polymer-peptide conjugates. Journal of Nuclear Medicine, 2005, 46, 1552-60.	5.0	80
51	Genetic synthesis and characterization of pH- and temperature-sensitive silk-elastinlike protein block copolymers. Journal of Biomedical Materials Research Part B, 2002, 62, 195-203.	3.1	77
52	Redox-Responsive Polysulfide-Based Biodegradable Organosilica Nanoparticles for Delivery of Bioactive Agents. ACS Applied Materials & Interfaces, 2017, 9, 21133-21146.	8.0	76
53	Silk-elastinlike protein polymers for matrix-mediated cancer gene therapy. Advanced Drug Delivery Reviews, 2010, 62, 1509-1523.	13.7	74
54	Macrophage silica nanoparticle response is phenotypically dependent. Biomaterials, 2015, 53, 574-582.	11.4	73

#	Article	IF	CITATIONS
55	Silk–elastinlike protein polymer hydrogels: Influence of monomer sequence on physicochemical properties. Polymer, 2009, 50, 366-374.	3.8	69
56	Surface Induced Nanofiber Growth by Self-Assembly of a Silk-Elastin-like Protein Polymer. Langmuir, 2009, 25, 12682-12686.	3.5	69
57	Silk-elastinlike recombinant polymers for gene therapy of head and neck cancer: From molecular definition to controlled gene expression. Journal of Controlled Release, 2009, 140, 256-261.	9.9	68
58	Polymer-peptide conjugates for angiogenesis targeted tumor radiotherapy. Nuclear Medicine and Biology, 2006, 33, 43-52.	0.6	67
59	One-year chronic toxicity evaluation of single dose intravenously administered silica nanoparticles in mice and their Ex vivo human hemocompatibility. Journal of Controlled Release, 2020, 324, 471-481.	9.9	64
60	Targetable water-soluble polymer-drug conjugates for the treatment of visceral leishmaniasis. Journal of Controlled Release, 2004, 94, 115-127.	9.9	63
61	Gold nanorod mediated plasmonic photothermal therapy: A tool to enhance macromolecular delivery. International Journal of Pharmaceutics, 2011, 415, 315-318.	5.2	62
62	Carboxyl-Terminated PAMAM-SN38 Conjugates: Synthesis, Characterization, and in Vitro Evaluation. Bioconjugate Chemistry, 2010, 21, 1804-1810.	3.6	60
63	Plasmonic photothermal therapy increases the tumor mass penetration of HPMA copolymers. Journal of Controlled Release, 2013, 166, 130-138.	9.9	59
64	Hyperthermia approaches for enhanced delivery of nanomedicines to solid tumors. Biotechnology and Bioengineering, 2015, 112, 1967-1983.	3.3	59
65	Comparative effect of gold nanorods and nanocages for prostate tumor hyperthermia. Journal of Controlled Release, 2015, 220, 245-252.	9.9	59
66	Genotoxicity of amorphous silica nanoparticles: Status and prospects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 16, 106-125.	3.3	59
67	Cellular Entry of G3.5 Poly (amido amine) Dendrimers by Clathrin- and Dynamin-Dependent Endocytosis Promotes Tight Junctional Opening in Intestinal Epithelia. Pharmaceutical Research, 2010, 27, 1547-1557.	3.5	58
68	Silica nanoconstruct cellular toleration threshold in vitro. Journal of Controlled Release, 2011, 153, 40-48.	9.9	58
69	In situ gelling silk-elastinlike protein polymer for transarterial chemoembolization. Biomaterials, 2015, 57, 142-152.	11.4	58
70	Comparison of Active and Passive Targeting of Docetaxel for Prostate Cancer Therapy by HPMA Copolymer–RGDfK Conjugates. Molecular Pharmaceutics, 2011, 8, 1090-1099.	4.6	56
71	Silkâ€elastinlike protein polymers improve the efficacy of adenovirus thymidine kinase enzyme prodrug therapy of head and neck tumors. Journal of Gene Medicine, 2010, 12, 572-579.	2.8	54
72	Synthesis and Characterization of a Matrix-Metalloproteinase Responsive Silk–Elastinlike Protein Polymer. Biomacromolecules, 2013, 14, 618-625.	5.4	54

#	Article	IF	CITATIONS
73	Fabrication of Highly Uniform Nanoparticles from Recombinant Silk-Elastin-like Protein Polymers for Therapeutic Agent Delivery. ACS Nano, 2011, 5, 5374-5382.	14.6	53
74	Synergistic enhancement of cancer therapy using a combination of heat shock protein targeted HPMA copolymer–drug conjugates and gold nanorod induced hyperthermia. Journal of Controlled Release, 2013, 170, 41-50.	9.9	53
75	A prostate-specific antigen–activated <i>N</i> -(2-hydroxypropyl) methacrylamide copolymer prodrug as dual-targeted therapy for prostate cancer. Molecular Cancer Therapeutics, 2007, 6, 2928-2937.	4.1	51
76	Silk-Elastinlike Protein Polymer Hydrogels for Localized Adenoviral Gene Therapy of Head and Neck Tumors. Biomacromolecules, 2009, 10, 2183-2188.	5.4	51
77	Controlled release from recombinant polymers. Journal of Controlled Release, 2014, 190, 304-313.	9.9	51
78	Tumor-targeted HPMA copolymer-(RGDfK)-(CHX-A″-DTPA) conjugates show increased kidney accumulation. Journal of Controlled Release, 2008, 132, 193-199.	9.9	49
79	Targetable HPMA Copolymer–Aminohexylgeldanamycin Conjugates for Prostate Cancer Therapy. Pharmaceutical Research, 2009, 26, 1407-1418.	3.5	47
80	PAMAM-Camptothecin Conjugate Inhibits Proliferation and Induces Nuclear Fragmentation in Colorectal Carcinoma Cells. Pharmaceutical Research, 2010, 27, 2307-2316.	3.5	47
81	Silk-Elastin-like Hydrogel Improves the Safety of Adenovirus-Mediated Gene-Directed Enzymeâ^'Prodrug Therapy. Molecular Pharmaceutics, 2010, 7, 1050-1056.	4.6	46
82	Technetium-99m-Labeled N-(2-Hydroxypropyl) Methacrylamide Copolymers: Synthesis, Characterization, and in Vivo Biodistribution. Pharmaceutical Research, 2004, 21, 1153-1159.	3.5	45
83	PEC-Benzaldehyde-Hydrazone-Lipid Based PEG-Sheddable pH-Sensitive Liposomes: Abilities for Endosomal Escape and Long Circulation. Pharmaceutical Research, 2018, 35, 154.	3.5	45
84	Cold nanorod-mediated hyperthermia enhances the efficacy of HPMA copolymer-90Y conjugates in treatment of prostate tumors. Nuclear Medicine and Biology, 2014, 41, 282-289.	0.6	44
85	Biodistribution of HPMA Copolymer-Aminohexylgeldanamycin-RGDfK Conjugates for Delivery. Molecular Pharmaceutics, 2009, 6, 1836-1847.	Prostateâ€ 4.6	€‰Cancerâ€ 42
86	In vivo evaluation of matrix metalloproteinase responsive silk–elastinlike protein polymers for cancer gene therapy. Journal of Controlled Release, 2015, 213, 96-102.	9.9	42
87	Influence of polymer structure and biodegradation on DNA release from silk–elastinlike protein polymer hydrogels. International Journal of Pharmaceutics, 2009, 368, 215-219.	5.2	41
88	Biological evaluation of RGDfK-gold nanorod conjugates for prostate cancer treatment. Journal of Drug Targeting, 2011, 19, 915-924.	4.4	41
89	Synthesis and evaluation of poly(styrene-co-maleic acid) micellar nanocarriers for the delivery of tanespimycin. International Journal of Pharmaceutics, 2011, 420, 111-117.	5.2	41
90	Anticancer and antiangiogenic activity of HPMA copolymer-aminohexylgeldanamycin-RGDfK conjugates for prostate cancer therapy. Journal of Controlled Release, 2011, 151, 263-270.	9.9	40

#	Article	IF	CITATIONS
91	Poly(amido amine) dendrimers in oral delivery. Tissue Barriers, 2016, 4, e1173773.	3.2	40
92	Influence of Silica Nanoparticle Density and Flow Conditions on Sedimentation, Cell Uptake, and Cytotoxicity. Molecular Pharmaceutics, 2018, 15, 2372-2383.	4.6	39
93	Water-soluble polymers for targeted drug delivery to human squamous carcinoma of head and neck. Journal of Drug Targeting, 2005, 13, 189-197.	4.4	38
94	In Vivo Methods of Nanotoxicology. Methods in Molecular Biology, 2012, 926, 235-253.	0.9	38
95	Comparison of silk-elastinlike protein polymer hydrogel and poloxamer in matrix-mediated gene delivery. International Journal of Pharmaceutics, 2012, 427, 97-104.	5.2	38
96	Biodegradable and pH sensitive hydrogels: synthesis by a polymer-polymer reaction. Macromolecular Chemistry and Physics, 1996, 197, 965-980.	2.2	37
97	Noninvasive Monitoring of HPMA Copolymer–RGDfK Conjugates by Magnetic Resonance Imaging. Pharmaceutical Research, 2009, 26, 1121-1129.	3.5	36
98	High intensity focused ultrasound hyperthermia for enhanced macromolecular delivery. Journal of Controlled Release, 2016, 241, 186-193.	9.9	36
99	N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers for targeted delivery of 8-aminoquinoline antileishmanial drugs. Journal of Controlled Release, 2001, 77, 233-243.	9.9	35
100	Nanomechanical Stimulus Accelerates and Directs the Self-Assembly of Silk-Elastin-like Nanofibers. Journal of the American Chemical Society, 2011, 133, 1745-1747.	13.7	35
101	Solid lipid nanoparticles containing 7-ethyl-10-hydroxycamptothecin (SN38): Preparation, characterization, in vitro, and in vivo evaluations. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 104, 42-50.	4.3	35
102	Silk-Elastinlike Protein Polymer Liquid Chemoembolic for Localized Release of Doxorubicin and Sorafenib. Molecular Pharmaceutics, 2016, 13, 2736-2748.	4.6	35
103	Macrophage Targeted N-(2-Hydroxypropyl)methacrylamide Conjugates for Magnetic Resonance Imaging. Molecular Pharmaceutics, 2006, 3, 550-557.	4.6	34
104	Delivery of bioactive agents from recombinant polymers. Progress in Polymer Science, 2007, 32, 1008-1030.	24.7	33
105	Mechanisms of immune response to inorganic nanoparticles and their degradation products. Advanced Drug Delivery Reviews, 2022, 180, 114022.	13.7	33
106	HPMA Copolymer-Aminohexylgeldanamycin Conjugates Targeting Cell Surface Expressed GRP78 in Prostate Cancer. Pharmaceutical Research, 2010, 27, 2683-2693.	3.5	32
107	Characterization and Real-Time Imaging of Gene Expression of Adenovirus Embedded Silk-Elastinlike Protein Polymer Hydrogels. Molecular Pharmaceutics, 2008, 5, 891-897.	4.6	31
108	Temperature-responsive silk-elastinlike protein polymer enhancement of intravesical drug delivery of a therapeutic glycosaminoglycan for treatment of interstitial cystitis/painful bladder syndrome. Biomaterials, 2019, 217, 119293.	11.4	30

#	Article	IF	CITATIONS
109	Preparation of dopamine-modified boron nanoparticles. Journal of Materials Chemistry, 2012, 22, 877-882.	6.7	28
110	Overcoming the stromal barrier for targeted delivery of HPMA copolymers to pancreatic tumors. International Journal of Pharmaceutics, 2013, 456, 202-211.	5.2	28
111	HPMA Copolymer–Doxorubicin–Gadolinium Conjugates: Synthesis, Characterization, and <i>in vitro</i> Evaluation. Macromolecular Bioscience, 2008, 8, 741-748.	4.1	26
112	Evidence of Oral Translocation of Anionic G6.5 Dendrimers in Mice. Molecular Pharmaceutics, 2013, 10, 988-998.	4.6	26
113	Silk-elastinlike protein polymers enhance the efficacy of a therapeutic glycosaminoglycan for prophylactic treatment of radiation-induced proctitis. Journal of Controlled Release, 2017, 263, 46-56.	9.9	26
114	Global gene expression analysis of macrophage response induced by nonporous and porous silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 533-545.	3.3	26
115	Characterization of Structurally Related Adenovirus-laden Silk-elastinlike Hydrogels. Journal of Bioactive and Compatible Polymers, 2008, 23, 5-19.	2.1	25
116	N-(2-Hydroxypropyl)methacrylamide(HPMA) Copolymer-Linked Nitroxides: Potential Magnetic Resonance Contrast Agents. Macromolecular Bioscience, 2003, 3, 647-652.	4.1	24
117	Differential toxicity of amorphous silica nanoparticles toward phagocytic and epithelial cells. Journal of Nanoparticle Research, 2011, 13, 5381-5396.	1.9	23
118	Effect of shear on physicochemical properties of matrix metalloproteinase responsive silk-elastinlike hydrogels. Journal of Controlled Release, 2014, 195, 92-98.	9.9	23
119	Influence of Solute Charge and Hydrophobicity on Partitioning and Diffusion in a Genetically Engineered Silkâ€Elastinâ€Like Protein Polymer Hydrogel. Macromolecular Bioscience, 2010, 10, 1235-1247.	4.1	22
120	Comparative Endocytosis Mechanisms and Anticancer Effect of HPMA Copolymer―and PAMAM Dendrimerâ€MTCP Conjugates for Photodynamic Therapy. Macromolecular Bioscience, 2017, 17, 1600333.	4.1	21
121	Thermal Analysis of Water in Silkâ~'Elastinlike Hydrogels by Differential Scanning Calorimetry. Biomacromolecules, 2004, 5, 793-797.	5.4	20
122	Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors. Beilstein Journal of Nanotechnology, 2015, 6, 1886-1896.	2.8	20
123	Enhanced efficacy of combination heat shock targeted polymer therapeutics with high intensity focused ultrasound. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1235-1243.	3.3	20
124	Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation. International Journal of Pharmaceutics, 2018, 545, 113-116.	5.2	20
125	Direct Observation of Amyloid Nucleation under Nanomechanical Stretching. ACS Nano, 2013, 7, 7734-7743.	14.6	19
126	Synthesis of water-degradable silica nanoparticles from carbamate-containing bridged silsesquioxane precursor. RSC Advances, 2018, 8, 4914-4920.	3.6	18

#	Article	IF	CITATIONS
127	Materials for advanced drug delivery in the 21st century: a focus area for Advanced Drug Delivery Reviews. Advanced Drug Delivery Reviews, 2008, 60, 956-956.	13.7	17
128	Directed patterning of the self-assembled silk-elastin-like nanofibers using a nanomechanical stimulus. Chemical Communications, 2012, 48, 10654.	4.1	17
129	Effects of Heating Temperature and Duration by Gold Nanorod Mediated Plasmonic Photothermal Therapy on Copolymer Accumulation in Tumor Tissue. Molecular Pharmaceutics, 2015, 12, 1605-1614.	4.6	17
130	Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials, 2018, 178, 317-325.	11.4	17
131	Engineered protein polymers for drug delivery and biomedical applications. Advanced Drug Delivery Reviews, 2002, 54, 1053-1055.	13.7	16
132	Transepithelial Transport of PAMAM Dendrimers Across Isolated Human Intestinal Tissue. Molecular Pharmaceutics, 2015, 12, 4099-4107.	4.6	16
133	Harnessing Extracellular Matrix Biology for Tumor Drug Delivery. Journal of Personalized Medicine, 2021, 11, 88.	2.5	16
134	Selfâ€Assembly of Thermoresponsive Recombinant Silkâ€Elastinlike Nanogels. Macromolecular Bioscience, 2018, 18, 1700192.	4.1	15
135	Transepithelial Transport of PAMAM Dendrimers across Isolated Rat Jejunal Mucosae in Ussing Chambers. Biomacromolecules, 2014, 15, 2889-2895.	5.4	14
136	Silica Nanoparticle–Endothelial Interaction: Uptake and Effect on Platelet Adhesion under Flow Conditions. ACS Applied Bio Materials, 2018, 1, 1620-1627.	4.6	14
137	Advances in recombinant polymers for delivery of bioactive agents. Advanced Drug Delivery Reviews, 2010, 62, 1403.	13.7	13
138	Sustained local delivery of oncolytic short hairpin RNA adenoviruses for treatment of head and neck cancer. Journal of Gene Medicine, 2014, 16, 143-152.	2.8	13
139	Molecular dynamics simulations in drug delivery research: Calcium chelation of G3.5 PAMAM dendrimers. Cogent Chemistry, 2016, 2, 1229830.	2.5	12
140	Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opinion on Drug Delivery, 2019, 16, 1051-1061.	5.0	12
141	Transient Receptor Potential Ion Channel–Dependent Toxicity of Silica Nanoparticles and Poly(amido) Tj ETQq1	1 <u>0</u> 78431 2.5	۱4 ₁₂ gBT /Cv
142	Transcriptional Responses of Human Aortic Endothelial Cells to Nanoconstructs Used in Biomedical Applications. Molecular Pharmaceutics, 2013, 10, 3242-3252.	4.6	10
143	Matrix Mediated Viral Gene Delivery: A Review. Bioconjugate Chemistry, 2019, 30, 384-399.	3.6	10
144	Inflammationâ€driven vascular dysregulation in chronic rhinosinusitis. International Forum of Allergy and Rhinology, 2021, 11, 976-983.	2.8	10

#	Article	IF	CITATIONS
145	Array-Based High-Throughput Analysis of Silk-Elastinlike Protein Polymer Degradation and C-Peptide Release by Proteases. Analytical Chemistry, 2016, 88, 5398-5405.	6.5	9
146	A dual-functional Embolization-Visualization System for Fluorescence image-guided Tumor Resection. Theranostics, 2020, 10, 4530-4543.	10.0	9
147	Recombinant Biomaterials for Pharmaceutical and Biomedical Applications. Pharmaceutical Research, 2008, 25, 672-673.	3.5	8
148	GRP78â€Targeted HPMA Copolymerâ€Photosensitizer Conjugate for Hyperthermiaâ€Induced Enhanced Uptake and Cytotoxicity in MCFâ€7 Breast Cancer Cells. Macromolecular Bioscience, 2019, 19, e1900032.	4.1	8
149	Location of stimuli-responsive peptide sequences within silk-elastinlike protein-based polymers affects nanostructure assembly and drug–polymer interactions. Journal of Drug Targeting, 2020, 28, 766-779.	4.4	8
150	Activation of Autophagy by Low-Dose Silica Nanoparticles Enhances Testosterone Secretion in Leydig Cells. International Journal of Molecular Sciences, 2022, 23, 3104.	4.1	8
151	Functionalized Dendrimers as Nanoscale Drug Carriers. Fundamental Biomedical Technologies, 2008, , 201-232.	0.2	7
152	In Vitro Synergistic Action of Geldanamycin- and Docetaxel-Containing HPMA Copolymer-RGDfK Conjugates Against Ovarian Cancer. Macromolecular Bioscience, 2014, 14, 1735-1747.	4.1	7
153	RGDfKâ€functionalized gold nanorods bind only to activated platelets. Journal of Biomedical Materials Research - Part A, 2017, 105, 209-217.	4.0	6
154	Regional Morphology and Transport of PAMAM Dendrimers Across Isolated Rat Intestinal Tissue. Macromolecular Bioscience, 2015, 15, 1735-1743.	4.1	5
155	Direct Observation of Interactions of Silk-Elastinlike Protein Polymer with Adenoviruses and Elastase. Molecular Pharmaceutics, 2015, 12, 1673-1679.	4.6	5
156	Time- and dose-dependent gene expression analysis of macrophage response as a function of porosity of silica nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 21, 102041.	3.3	5
157	Vascular permeability in chronic rhinosinusitis enhances accumulation and retention of nanoscale pegylated liposomes. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 38, 102453.	3.3	5
158	Caspase 3 Independent Cell Death Induced by Amorphous Silica Nanoparticles. Nanoscience and Nanotechnology Letters, 2011, 3, 309-313.	0.4	5
159	Liquid-cell transmission electron microscopy for imaging of thermosensitive recombinant polymers. Journal of Controlled Release, 2022, 344, 39-49.	9.9	5
160	Comparison of biological responses between submerged, pseudo-air-liquid interface, and air-liquid interface and air-liquid interface exposure of A549 and differentiated THP-1 co-cultures to combustion-derived particles. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2022, 57, 540-551.	1.7	5
161	In Vitro Evaluation of HPMA-Copolymers Targeted to HER2 Expressing Pancreatic Tumor Cells for Image Guided Drug Delivery. Macromolecular Bioscience, 2014, 14, 92-99.	4.1	4
162	Effect of collection methods on combustion particle physicochemical properties and their biological response in a human macrophage-like cell line. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 1170-1185.	1.7	4

#	Article	IF	CITATIONS
163	Meta-analysis of global and high throughput public gene array data for robust vascular gene expression discovery in chronic rhinosinusitis: Implications in controlled release. Journal of Controlled Release, 2021, 330, 878-888.	9.9	4
164	Nanotheranostics and In-Vivo Imaging. Advances in Delivery Science and Technology, 2016, , 97-129.	0.4	2
165	Synthesis of water dispersible boron core silica shell (B@SiO2) nanoparticles. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	2
166	An Oligomeric Sulfated Hyaluronan and Silk-Elastinlike Polymer Combination Protects against Murine Radiation Induced Proctitis. Pharmaceutics, 2022, 14, 175.	4.5	2
167	Translational Development of a Silkâ€Elastinlike Protein Polymer Embolic for Transcatheter Arterial Embolization. Macromolecular Bioscience, 2022, , 2100401.	4.1	2
168	BECLIN-1-Mediated Autophagy Suppresses Silica Nanoparticle-Induced Testicular Toxicity via the Inhibition of Caspase 8-Mediated Cell Apoptosis in Leydig Cells. Cells, 2022, 11, 1863.	4.1	2
169	Preface. Journal of Controlled Release, 2012, 163, 1.	9.9	1
170	ADDR Editor's Collection 2015. Advanced Drug Delivery Reviews, 2015, 91, 1-2.	13.7	1
171	Development of Thermoresponsive Protein Complexes for Targeting CD20 Receptors. Macromolecular Bioscience, 2022, , 2200028.	4.1	1
172	Effect of combustion particle morphology on biological responses in a Co-culture of human lung and macrophage cells. Atmospheric Environment, 2022, 284, 119194.	4.1	1
173	Enhanced Delivery of Polymer Therapeutics to Solid Tumors. ACS Symposium Series, 2013, , 151-185.	0.5	0
174	Editorial: Editors' Collection 2016. Advanced Drug Delivery Reviews, 2017, 108, 1.	13.7	0
175	ADDR Editor's Collection 2017. Advanced Drug Delivery Reviews, 2017, 122, 1.	13.7	0
176	ADDR Editor's Collection 2018. Advanced Drug Delivery Reviews, 2018, 136-137, 1.	13.7	0
177	ADDR Editor's Collection 2019. Advanced Drug Delivery Reviews, 2019, 151-152, 1.	13.7	0