Michael Peller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6861317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REDUCE – Indication catalogue based ordering of chest radiographs in intensive care units. Journal of Critical Care, 2022, 69, 154016.	1.0	1
2	Tuning the Synergistic Interplay between Clinical MRI Contrast Agents and MR-Active Metal–Organic Framework Nanoparticles. Chemistry of Materials, 2022, 34, 3862-3871.	3.2	6
3	A Heatâ€Activated Drugâ€Delivery Platform Based on Phosphatidylâ€(oligo)â€glycerol Nanocarrier for Effective Cancer Treatment. Advanced NanoBiomed Research, 2021, 1, 2000089.	1.7	12
4	MRIâ€Active Metalâ€Organic Frameworks: Concepts for the Translation from Lab to Clinic. Advanced Therapeutics, 2021, 4, 2100067.	1.6	6
5	Clinically Approved MRI Contrast Agents as Imaging Labels for a Porous Ironâ€Based MOF Nanocarrier: A Systematic Investigation in a Clinical MRI Setting. Advanced Therapeutics, 2020, 3, 1900126.	1.6	19
6	A multi-institution study: comparison of the heating patterns of five different MR-guided deep hyperthermia systems using an anthropomorphic phantom. International Journal of Hyperthermia, 2020, 37, 1103-1115.	1.1	5
7	Tuning the Morphological Appearance of Iron(III) Fumarate: Impact on Material Characteristics and Biocompatibility. Chemistry of Materials, 2020, 32, 2253-2263.	3.2	19
8	Quantitative, Multi-institutional Evaluation of MR Thermometry Accuracy for Deep-Pelvic MR-Hyperthermia Systems Operating in Multi-vendor MR-systems Using a New Anthropomorphic Phantom. Cancers, 2019, 11, 1709.	1.7	27
9	Metal–organic framework nanoparticles for magnetic resonance imaging. Inorganic Chemistry Frontiers, 2018, 5, 1760-1779.	3.0	99
10	A pilot trial of doxorubicin containing phosphatidyldiglycerol based thermosensitive liposomes in spontaneous feline soft tissue sarcoma. International Journal of Hyperthermia, 2017, 33, 178-190.	1.1	22
11	Imparting Functionality to MOF Nanoparticles by External Surface Selective Covalent Attachment of Polymers. Chemistry of Materials, 2016, 28, 3318-3326.	3.2	218
12	Surrogate MRI markers for hyperthermia-induced release of doxorubicin from thermosensitive liposomes in tumors. Journal of Controlled Release, 2016, 237, 138-146.	4.8	40
13	Method of hyperthermia and tumor size influence effectiveness of doxorubicin release from thermosensitive liposomes in experimental tumors. Journal of Controlled Release, 2016, 222, 47-55.	4.8	50
14	Material Characterization of Dual-Energy Computed Tomographic Data Using Polar Coordinates. Journal of Computer Assisted Tomography, 2015, 39, 134-139.	0.5	1
15	Flip angle-optimized fast dynamic T ₁ mapping with a 3D gradient echo sequence. Magnetic Resonance in Medicine, 2015, 73, 1158-1163.	1.9	5
16	Thermosensitive liposomal drug delivery systems: state of the art review. International Journal of Nanomedicine, 2014, 9, 4387.	3.3	203
17	Non-ionic Gd-based MRI contrast agents are optimal for encapsulation into phosphatidyldiglycerol-based thermosensitive liposomes. Journal of Controlled Release, 2013, 166, 22-29.	4.8	27
18	Analysis of Signal Dynamics in Oxygen-Enhanced Magnetic Resonance Imaging. Investigative Radiology, 2010. 45, 165-173.	3.5	12

MICHAEL PELLER

#	Article	IF	CITATIONS
19	Size of thermosensitive liposomes influences content release. Journal of Controlled Release, 2010, 147, 436-443.	4.8	106
20	<i>In vitro</i> characterization of phosphatidylglyceroglycerolâ€based thermosensitive liposomes with encapsulated ¹ H MR <i>T</i> ₁ â€shortening gadodiamide. Contrast Media and Molecular Imaging, 2008, 3, 19-26.	0.4	23
21	MR Characterization of Mild Hyperthermia-Induced Gadodiamide Release From Thermosensitive Liposomes in Solid Tumors. Investigative Radiology, 2008, 43, 877-892.	3.5	39
22	Ferrite-enhanced MRI monitoring in hyperthermia. Magnetic Resonance Imaging, 2005, 23, 1017-1020.	1.0	19
23	Fast oxygen-enhanced multislice imaging of the lung using parallel acquisition techniques. Magnetic Resonance in Medicine, 2005, 53, 1317-1325.	1.9	35
24	Hyperthermia induces T1 relaxation and blood flow changes in tumors. A MRI thermometry study in vivo. Magnetic Resonance Imaging, 2003, 21, 545-551.	1.0	37
25	Comparison Study of Oxygen-Induced MRI-Signal Changes and pO2 Changes in Murine Tumors. Advances in Experimental Medicine and Biology, 2003, 530, 461-465.	0.8	Ο
26	T1 relaxation time at 0.2 Tesla for monitoring regional hyperthermia: Feasibility study in muscle and adipose tissue. Magnetic Resonance in Medicine, 2002, 47, 1194-1201.	1.9	40
27	Oxygen-enhanced MRI of the brain. Magnetic Resonance in Medicine, 2002, 48, 271-277.	1.9	54
28	Optimization and evaluation of the signal intensity change in multisection oxygen-enhanced MR lung imaging. Magnetic Resonance in Medicine, 2000, 43, 860-866.	1.9	96
29	New drugs for BNCT: An experimental approach. Strahlentherapie Und Onkologie, 1999, 175, 118-120.	1.0	Ο
30	Non-invasive temperature mapping using MRI: comparison of two methods based on chemical shift and T1-relaxation. Magnetic Resonance Imaging, 1998, 16, 393-403.	1.0	77
31	Oxygen-induced MR signal changes in murine tumors. Magnetic Resonance Imaging, 1998, 16, 799-809.	1.0	20
32	Regional Relative Blood Volume MR Maps of Meningiomas Before and After Partial Embolization. Journal of Computer Assisted Tomography, 1998, 22, 104-110.	0.5	24
33	Effects of partial volume and phase shift between fat and water in gradient-echo magnetic resonance-mammography. Magnetic Resonance Materials in Physics, Biology, and Medicine, 1996, 4, 105-113	1.1	8